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Abstract 

The rate of innovation occurring in surgery is beyond our systemic capacity to 

quantify, with several methodological and practical challenges. The existing paucity 

of surgical innovation metrics presents a global healthcare problem especially as 

surgical innovations become increasingly costlier at a time when healthcare provision 

is experiencing a radical transformation driven by pressures to reduce costs, an ageing 

population with ever-increasing healthcare needs and patients with growing 

expectations.  

 

This thesis aims to devise a novel, quantitative, network-based framework that will 

permit modelling and measuring surgical innovation to add the most value to patient 

care. It involves the systematic, graphical and analytical assessment of surgical 

innovation in a way that has never been done before. This is based on successful 

models previously applied in the industry with advanced analytical techniques derived 

from social science (network analysis). In doing so, it offers an exciting new 

perspective and opportunity for understanding how the innovation process originates 

and evolves in surgery and how it can be measured in terms of value and virality, a 

priority for the NHS, RCS, Imperial and the wider surgical community.  

 

The ability to measure value and rank innovations is expected to play a fundamental 

role in guiding policy, strategically direct surgical research funding, and uncover 

innovation barriers and catalysts. This will ensure participation in the forefront of 

novel surgical technology and lay the scientific foundations for the development of 

improved healthcare models and services to enhance the quality of healthcare 

delivered. 
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1.	  Introduction	  	  
 

Surgery and innovation go hand-in-hand with the majority of surgeons “innovating on 

a daily basis”.1 Without innovation, surgery would be static with little room for 

improvement. Instead, surgery has witnessed unprecedented advances, most as a 

direct result of innovation, some of which have led to substantial improvement in 

patient outcomes and countless of lives saved.1  

 

At present, the rate of innovation occurring in surgery is beyond our systemic 

capacity to quantify, with several methodological and practical challenges.2 Earlier 

attempts to measure surgical innovation through publication and patent counts have 

had minimal uptake due to oversimplifying assumptions.3 Existing frameworks are 

limited to qualitative models.4 These include IDEAL, currently the most widely 

implemented surgical innovation framework with its own developers recently 

admitting that it has “probably only contributed in a minor way to the improvement 

seen so far”.5  

 

The qualitative nature of existing approaches to the study of surgical innovation has 

thwarted accurate evaluations within and across specialties. As a result, assessment 

and judgement are often used rather than actual measurement – a characteristic 

example is that of robotic surgery.6 By looking outside healthcare, it becomes 

apparent that innovation metrics are extensively used. International corporations 

including innovation leaders such as Apple Inc. and Amazon.com, Inc. have been 

using innovation metrics for years, and heavily rely on these to systematically 
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evaluate their innovation efforts.7 It is through innovation metrics that strategy is 

devised towards enhancing innovation and driving performance.8  

 

The existing paucity of surgical innovation metrics presents a major healthcare 

problem on a global scale especially as surgical innovations become increasingly 

costlier.9 At the same time, global healthcare provision (including in the NHS) is 

experiencing a radical transformation driven by pressures to reduce costs, an ageing 

population with ever-increasing healthcare needs and patients with growing 

expectations. It is for all these reasons that there is a growing sense of urgency to 

develop rigorous surgical innovation metrics, crucial for optimising patient care.10 

 

Innovation - including the global spread of ideas and knowledge - is a complex, 

network-driven dynamic process; to be able to measure it, it must be modeled as 

such.11 An effective way to model the footprints of innovation in surgery is through 

the use of network analysis.4 Networks (e.g. citation, collaboration) enable the precise 

tracing of how surgeons discover, exchange and apply new information over time.  

 

This thesis represents the first of its kind in surgical research. Through a number of 

studies, it illustrates how network analysis of big data – large, complex 

(multidimensional) datasets - can be utilised to study, measure, and ‘visualise’ the 

innovation process in surgery. These include the development and validation of novel 

surgical innovation metrics and demonstrating how this approach can be used to 

devise effective strategies towards the establishment of partnerships that can enhance 

research impact, facilitate innovation and advance patient care. Finally, the impact of 

marketing efforts and different regulatory systems on innovation and patient safety is 
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evaluated. All studies are derived from the real world and address issues of practical 

importance to surgeons universally.  

 

This research offers an exciting new perspective and opportunity for understanding 

how the innovation process originates and evolves in surgery and how it can be 

measured in terms of value and virality, a priority for the NHS, RCS, Imperial and the 

wider surgical community. The ability to measure value and rank innovations is 

expected to play a fundamental role in guiding policy, strategically direct surgical 

research funding, and uncover innovation barriers and catalysts. This will ensure 

participation in the forefront of novel surgical technology and lay the scientific 

foundations for the development of improved healthcare models and services to 

enhance the quality of healthcare delivered. 
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2.	  The	  need	  for	  process	  
transformation	  and	  novel	  surgical	  
innovation	  metrics	  in	  the	  era	  of	  data	  
intelligence	  
 

2.1	  Introduction	  
 

Innovation has been defined as “the implementation of a new or significantly 

improved product (good or service), or process, a new marketing method, or a new 

organisational method in business practices, workplace organisation, or external 

relations”.12 This definition has relevance to surgical innovation as it emphasizes the 

two key characteristics of innovation: novelty (“new”) and added value 

(“improvement”). An additional and important point highlighted in this definition is 

that innovation may not necessarily be a product but can relate to a process, 

organisational change, or even a new marketing strategy (Fig. 1). Thus, as long as 

novelty and added value are present, the implementation of any change can be 

regarded as innovation.12    
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Figure	  1	  Examples of the four different types of surgical innovation. A ‘hybrid’ innovation relates to the 
combination of two (or more) innovation types, e.g., virtual shared medical appointments (process 
innovation) conducted through Skype® (product innovation).    

 

 

Novelty may not necessarily refer to ‘first ever appearance’ of a product, service or 

process, but can also relate to ‘first ever translation’ of a product from one sector to 

another, for example the implementation of an established organisational model from 

the corporate world to healthcare. Similarly, novelty may relate to the introduction of 

an established product (e.g., a medical device) to a new anatomic location or patient 

group (e.g., first application in the paediatric population).13 One core definition of 

value can derive from the quantifiable factor of financial potential so that in the 

healthcare sector, value has been defined as a “meaningful outcomes achieved for a 

patient relative to the money spent on his or her care”14  (Fig. 2). 
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Figure	  2	  Value in healthcare relates to balance between improved patient outcomes and reduction in 
associated costs.   

 

 

2.2	  Value	  in	  Healthcare	  
 

The definition of value in healthcare may at first appear simple (essentially 

represented by the ratio between outcomes and costs),15 however, measuring value - 

and thus innovation - can be challenging. This is evident by the absence of innovation 

metrics in many medical fields, which lies in direct contrast to other industries (such 

as financial technologies and commercial online sales platforms) where the strengths 

and weaknesses of new innovations are formally characterised through specific 

innovation metrics.7,8  

 

Surgery is one such field where innovation metrics are lacking and here smart metrics 

are urgently needed if innovation is to flourish.16 SMART, relates to an acronym 

commonly used in management for optimal performance indicators and stands for 
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Specific, Measurable, Achievable, Results-based, and Time-bound.17 After all, “we 

can only be sure to improve what we can actually measure”.18,19 In the era of big 

data, artificial intelligence (AI), and an unceasing technological revolution, the lack of 

surgical innovation metrics can no longer be considered sustainable. Beyond the 

obvious implications to patients and the wider society, there are real financial risks 

that are becoming increasingly apparent even in G7 country-members, the world’s 

seven largest and most advanced economies.20,21  

 

These include ageing populations and Western sedentary lifestyles that are powerful 

strains on country-level healthcare budgets.22 This is further compounded by an 

increasing pressure to adopt expensive medical devices; many of which are promoted 

and often perceived as superior despite no clear evidence to support this.23,24 Without 

properly measuring innovation, there is a real risk that marketing and financial factors 

as well as intuition rather than actual value will increasingly drive the way demand is 

met.   

 

Robotic surgery is a prominent example that is characterised by marked diffusion 

across a number of surgical specialties in the absence of demonstrable value beyond 

minimally invasive prostatectomy.25 Recent studies have shown that despite over 30 

years of incremental advances, robotic surgery remains a surgical intervention of 

“low value”, representing “a potential candidate for disinvestment” and an 

“unfulfilled promise”.20,26,27 Yet, despite no clear demonstration of improved 

outcomes over conventional laparoscopic surgery and substantially increased costs 

(estimated at around 13% across a range of surgical specialties), the market share of 

robotic surgery has continuously been expanding for over a decade now.28 This can 
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only be explained by non-clinical factors driving its diffusion, such as the industry’s 

intense marketing strategy targeting not only surgeons and other healthcare providers 

(business-to-business model) but also patients directly (business-to-consumer model) 

to promote interest and sustain demand. 29,30  

 

It thus becomes apparent that, to ensure progress in healthcare, the ability to measure 

innovation (through value created or added) is crucial.31 It is only through innovation 

metrics that benchmarking, comparisons, and rankings can become possible, all 

critical for informing healthcare policy and ensuring the selective adoption of those 

innovations of highest value.32 To do so, both components of value – outcomes and 

costs – must be incorporated in those metrics.    

 

What is also important to appreciate is that outcomes should be “meaningful” and, as 

“value should always be defined around the customer”,32 what should actually be 

measured is what patients deem important (rather than what healthcare providers 

and/or policy-makers choose to measure - their perspectives and priorities often differ 

substantially from those of patients).14   

 

A variety of measures for patient outcomes have been developed and validated for 

different diseases and patient populations. Examples include overall and disease-

specific survival rates primarily used in oncology, Quality of Life (QoL) scores and 

Patient Reported Outcome Measures (PROMs) used in a range of diseases to measure 

the impact of treatments on patients’ wellbeing.33 More recently, with an increasing 

trend towards value-based purchasing, composite quality measures of surgical 

performance have been developed and validated for certain surgical operations.34  
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Similarly, costs too should be defined around the patient, and should thus take into 

consideration the ‘full cycle of care’.32 This is paramount as healthcare delivery often 

takes place across several organisational units (e.g., primary and secondary care) that 

therefore need to be properly coordinated.32 It is this fragmented nature of healthcare 

with costs often dispersed across a variety of healthcare providers and organisational 

units that substantially adds to the challenges of measuring the ‘true’ value of 

healthcare innovations.9  

 

Unless a systematic framework is employed that will take into account all of the 

above, the likelihood is that any measurement risks being inaccurate and misleading 

with potentially detrimental consequences on healthcare delivery. It is also crucial 

that any evidence utilised in an innovation benchmarking process is derived from 

adequately designed sources that accommodate sound methodological comparison 

methods (such as demographics, economics, population size, geography, etc).    

 

2.3	  Conceptualizing	  surgical	  innovation	  	  	  
 

To conceptualize the innovation process in surgery, it is important to look outside 

healthcare, at sectors where innovation has been extensively studied. The Innovation 

Value Chain (IVC), a concept introduced and applied over a decade ago,35 depicts 

innovation as a continuous process consisting of three successive phases linked to 

each other in the following order: ‘idea generation’, ‘conversion’ (also referred to as 

‘translation’ or ‘materialisation’), and ‘diffusion’ (relating to the uptake of innovation 

and associated ‘market success’) (Fig. 3).35       



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   23	  

 

 
Figure	  3	  The three phases of the innovation process according to the innovation value chain.  

 

All links between those three phases must be present and strong if innovation is to 

occur. If any link is deficient or even weak, it does not matter how strong the others 

are, the ‘chain’ will break and innovation will be compromised. Hence, it is the 

weakest link that dictates innovative ability.35  

 

For innovation to transpire, a flow of novel ideas is vital but insufficient. Mechanisms 

are needed to capture and filter those ideas worthy of further evaluation. The ability to 

convert (translate) those ideas into actual products, processes (or other novel 

changes), and subsequently diffuse these across the market is paramount. Diffusion 

(dissemination) of innovations does not happen passively nor does it happen by 

chance. On the contrary, it is an active process that requires carefully planned and 

executed strategies for boosting the visibility of novel products, services or processes, 

and thus optimising their chances of uptake and becoming a success.35 

 

The generation, development and diffusion of innovations are subject to a natural 

selection type process (‘survival of the fittest’).36,37 This natural selection becomes 
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even more prominent in the context of surgical innovation as a result of the strict 

monitoring and regulatory frameworks set in place to safeguard patient safety and 

address ethical concerns.38 This is particularly true when it comes to ‘first-in-human’ 

applications or when proposing the expansion of small studies to larger ones or to a 

new patient cohort (e.g., from an adult to a paediatric population).  

 

To exemplify this natural selection process, this thesis introduces the original concept 

of the Surgical Innovation Funnel (SIF).39 This consists of the different stages of 

implementation of surgical innovation including the description of ideas, and the pre-

clinical (i.e., laboratory, animal, and cadaveric studies) as well as clinical (based on 

the levels of evidence) phases. Innovations progressively and selectively flow along 

these stages, with only the fittest ones reaching the final stage (Fig. 4).39  

 

 
Figure	  4	  The surgical innovation funnel. Left-hand panel: the surgical innovation funnel illustrating the 
different stages through which innovation in surgery typically progresses. Right-hand panel: the 
different stages of innovation implementation according to the level of evidence. 
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2.4	  The	  need	  for	  surgical	  innovation	  metrics	  
 

Having defined, classified, and described the stages of innovation, an important 

question ensues: how can such a complex, multi-faceted, and dynamic process be 

measured? Answering this question is critical for (i) informing healthcare policy and 

(ii) guiding clinical practice towards the strategic adoption of innovations with the 

highest value. At the same time, innovation metrics can also enable (iii) the early 

dismissal of low value pseudo-innovations before substantial financial, human, and 

social capital resources are further consumed. This strategic and timely disinvestment 

will likely reduce waste in healthcare thus optimising efficiency in terms of resource 

utilisation.20,40  

 

In addition to optimising patient care, patient safety, and resource utilisation, 

innovation metrics can be valuable in (iv) strategically directing research funding 

through comparative analysis and rankings to uncover superiority and enable 

prioritisation. This is fundamental as innovation in surgery is entirely dependent on 

research. Surgical research whether involving basic science, engineering, clinical 

trials, or big data analytics is typically associated with high costs.41 In the presence of 

finite resources and competing national interests for investment, the need for 

innovation metrics is evident.42,43 Furthermore, as surgical research represents such a 

diverse range of themes and complex data types (that can be multi-dimensional and 

multi-relational), the introduction of innovation metrics would (v) offer a common 

platform to appraise and compare new surgical developments irrespective of their 

nature.   
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By looking outside healthcare, it becomes apparent that innovation metrics are 

extensively used. International corporations including innovation leaders such as 

Apple Inc. and Amazon.com, Inc. have been using smart innovation metrics for years, 

and heavily rely on these to systematically evaluate their innovation efforts.7 As stated 

in the Introduction, it is through innovation metrics that strategy is devised towards 

enhancing innovation and driving performance.8 Whilst most metrics used in these 

industries cannot be directly translated to healthcare (as the outcomes of interest 

differ), they nonetheless offer important lessons7 that can be adopted to enhance 

medical and surgical practice. 

 

There are two main categories of innovation metrics - those measuring ‘activity’ 

(input) and those measuring ‘impact’ (output).8,44 For innovation to take place, the 

output must be shown to offer added or new value (Fig. 5). Common metrics used for 

measuring input in corporate innovation include expenditure towards Research & 

Development (R&D) and marketing, whilst for output, sales and profits are often 

used.8 Another metric is Return On Investment (ROI), the ratio between output and 

input.8  
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Figure	   5	   The innovation process in surgery. R&D = Research & Development; NLP = Natural 
Language Processing; NIS = National (Nationwide) Inpatient Sample database (HCUP); GUDID = 
Global Unique Device Identification Database (FDA); INTEMACS = Interagency Registry for 
Mechanically Assisted Circulatory Support; FDA = Food and Drug Administration. 

 

 

Managing healthcare innovation is complex due to the volume and speed of new 

evidence generation and the wide variation of clinical practice, so that it is considered 

“the most complex and fast moving industry”.45 It is the unique Volume, Veracity, 

Velocity, and Variety of data evidence; collectively referred to as the ‘four Vs’ that 

has led to the title of ‘big data’.46,47 A key challenge relates to its fragmented nature 

involving a multitude of stakeholders (e.g., patients, surgeons, policy-makers, medical 

device manufacturers, health insurance companies), each with their own perspective 

of what constitutes value.9  
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The need for standardised metrics of global surgical surveillance has been widely 

emphasised,48 and a framework for evaluating surgical innovation (IDEAL) 

developed.49 However, despite its universal adoption underlining the importance of 

evaluating innovation in surgery (“no surgical innovation without evaluation”),50 this 

framework is primarily qualitative in nature, lacking quantitative components. It is 

precisely in this area where innovation metrics can offer substantial value in 

objectively assessing new and current innovations.31  

 

In the past, attempts have been made to use patent and publication counts to quantify 

innovations in surgery.3 Though this data may be of interest, they both measure 

activity rather than impact, and more importantly rely on the assumption that the 

acquisition of Intellectual Property (IP) will eventually translate to new products and 

revenues.51 However, this is seldom the case.52  

 

The rise of big clinical databases offers a unique opportunity for measuring surgical 

innovation and conducting comparisons and rankings applicable to the real world.53 

Innovation metrics based on big data can provide a novel insight into surgical 

innovation and permit meaningful comparisons essential for both clinical practice and 

policymaking. Conventional statistical techniques can suffer from some limitations 

when handling some forms of big data. The ‘four Vs’ necessitate the use of 

substantially more powerful analytical tools to capture underlying complex, non-

linear relationships.54 Moreover, data derived from patient registries are often less 

structured and uncategorized since these are usually set up for different purposes (e.g., 

billing), and thus difficult to analyse unless thoroughly curated. This data processing 

is not only very expensive (owing to the expertise and time required) but, more 
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importantly, too slow when compared with the rate of production (deposition) of new 

data. This inevitably makes a curated big dataset likely to be already outdated before 

it is even ready for analysis.54,55 This data complexity therefore requires the 

application of Data Intelligence – the utilisation of advanced analytical processes 

such as machine learning, network approaches and artificial intelligence to manage 

big data. 

 

Machine Learning (ML) represents a collection of computational tools and techniques 

with the potential of overcoming these limitations. As an example, Natural Language 

Processing (NLP) permits data mining, i.e., the automatic categorisation and labeling 

of previously unstructured data based on content.56 Another example is Deep 

Learning (DL), which by implementing algorithms based on a hierarchical multi-level 

learning approach to recognise patterns (in a fashion similar to the human brain),57 

offers researchers the possibility to extract meaningful abstract representations from 

heterogeneous, uncategorised big data.55 Importantly, this can be performed in real 

time to provide continuously updated results based on the latest evidence and 

individual patient data.57  

 

In addition to the aforementioned techniques falling under the category of 

‘unsupervised learning’ (i.e., discovering structure in unlabeled data), ‘supervised 

learning’ (i.e., the training of the DL algorithm to make predictions from novel data 

based on existing data and outcomes) can prove essential for evaluating surgical 

innovation.58 Again, looking outside healthcare, innovation leaders such as Google 

Inc. and Microsoft Corporation routinely use DL algorithms to analyse big data and 

facilitate decision-making based on predictive models.55 By utilising this approach on 
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individual patient data, the promises of precision medicine can be achieved by 

selecting the best innovations applied to the populations to which they are most 

suited. 

 

In healthcare, IBM has recently implemented AI to create IBM Watson for Oncology 

a DL predictive algorithm trained by Memorial Sloan Kettering Cancer Center 

(MSKCC) physicians to assist in the decision-making of the multi-disciplinary team 

(MDT).59 IBM Watson for Oncology ranks treatment options and offers evidence-

based, personalised advice by integrating and analysing data from a variety of sources 

including not only the literature, but also the individual patients’ laboratory results 

and physicians’ notes.60 This can be achieved within seconds and shown to correlate 

by 90% with the actual recommendations of the MDT.61 This exceptional ability of 

real-time, multi-dimensional analytics is likely to be of special salience when it comes 

to measuring surgical innovation.    

 

To measure surgical innovation, modeling the underlying process is required. As the 

global spread of ideas, knowledge and innovation is a complex, network-driven 

dynamic process,4 an effective way to model the footprints of innovation is through 

the use of network analysis.62 Networks (e.g., citation and collaboration networks) 

enable the precise tracing of how all stakeholders (i.e., the nodes of the networks) 

involved in the innovation process forge, maintain, and sever connections (i.e., links 

between nodes) over time, and thus discover, exchange and apply new information.  

 

A promising first step in this direction in described in detail in Chapter 3 with the 

development of the first two network-based, surgical innovation-specific metrics, 
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namely the structural virality and innovation index aimed at measuring the diffusion 

of surgical innovation and evidence-based innovation value, respectively.39 As also 

demonstrated in Chapter 3, these indices have been validated against real world data 

(from the National Inpatient Sample-NIS database) showing a strong, statistically 

significant correlation.39 Of note, no correlation was found when traditional metrics 

(including number of publications and citations) were studied alongside the same real 

world data. This further supports the need for the introduction and adoption of novel 

innovation-specific metrics rather than traditional metrics (that were not developed 

for directly assessing innovation).39  

 

Novel innovation metrics can be applied to all relevant data available and should not 

be confined to Randomized Controlled Trials (RCTs). This is especially relevant to 

surgery where the conduction (and even analysis on certain occasions) of RCTs 

remains problematic, as is their practicality when it comes to assessing harm.43,63 The 

latter is of particular importance as surgical innovation inherently involves risk.13 

Surgical innovation metrics should complement the traditional evidence base with 

real world evidence incorporating multiple additional sources including those derived 

from administrative healthcare databases.64  

 

In addition to more traditional publication and patent data as well as financial data, 

recently emerging alternative metrics (altmetrics) are required for the evaluation of 

surgical innovation in an ‘all-rounded’ perspective.65 In the modern digital world, 

these represent “indicators of different types of visibility” and offer the ability to 

measure both input/activity (in terms of online presence, social media promotion and 

digital marketing) and output/impact (in terms of references in news media, Internet 
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citations, search engine hits, downloads, and other metrics of impact relating to 

Patient and Public Involvement, PPI).65  

 

It thus becomes apparent that SMART surgical innovation metrics are essential and 

can only be developed through data intelligence where big data from a number of 

diverse sources are collected, linked and analysed in real time using an array of 

advanced computational tools, including ML, neural networks and AI. It is important 

to appreciate that with these immense opportunities, new challenges emerge. 

Examples relate to data governance; in particular issues concerned with privacy, 

access, storage, database linkage, and online safety. Patient confidentiality and the 

application of cybersecurity principles are paramount and cannot be compromised. 

Technology to address these challenges is being developed in parallel. Examples 

include high security cloud storage (e.g. Iron Mountain®)66 and distributed ledger 

technologies such as Blockchain, a digital network originally designed to ensure 

safety in online transactions and more recently introduced to healthcare by IBM to 

manage clinical trial data and electronic medical records while maintaining regulatory 

compliance.67  

 

2.5	  Conclusion	  	  	  	  	  	  	  	  
 

Data intelligence, enabling the automated collection, processing and analysis of large, 

complex (multi-dimensional and multi-relational) datasets to measure innovation 

remains largely underutilised in healthcare. Surgical innovation metrics will enable 

quantified benchmarking, comparisons, and rankings of innovations according to their 

individual value. This is fundamental for informing policy and guiding clinical 
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practice in view of the strategic adoption of innovations of highest value. The future 

in this field is to engage with healthcare leaders and policy makers to highlight the 

strengths and powerful advantages of introducing quantifiable innovation indices and 

to setup both national and international strategies with which to implement them. 

 

2.6	  Chapter	  Summary	  
 

Novel surgical innovations are being introduced at a rate and volume that surpasses 

our capacity to quantify them. The current system for assessing innovations is 

primarily qualitative so that there is confusion in the selection of new surgical 

devices. As a result, the selection of innovations is subject to exploitative marketing 

efforts, which can result in the diffusion of costlier technologies that lack evidence of 

added value over established practice. This chapter aimed to highlight why surgical 

innovation metrics are urgently needed and how data intelligence can facilitate their 

development. 

 

Data intelligence enables the collection and analysis of big data using machine 

learning, artificial intelligence, and network analysis. When looking outside 

healthcare, it becomes apparent that innovation leaders across a number of fields in 

the corporate world have been heavily relying on SMART (Specific, Measurable, 

Achievable, Results-based, and Time-bound) metrics to systematically evaluate their 

innovation efforts. It is through metrics that strategy is directed towards enhancing 

innovation and driving performance. These metrics are lacking in surgery and there is 

a growing sense of urgency to develop rigorous surgical innovation metrics, crucial 

for optimising patient care.     
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There is an implicit need for quantifiable innovation metrics for surgical innovation. 

Current global healthcare pressures are straining budgets, which are further depleted 

by an increasing emphasis on expensive medical devices without clear evidence of 

added value. Unless surgical innovation metrics are introduced, there is a real danger 

that marketing factors and intuition alone rather than value will inform assessment. 

The relevant data is increasingly abundant and the necessary tools for analysis are 

available and waiting. Innovation metrics will enable benchmarking, comparisons, 

and rankings of innovations by value. This is fundamental for informing policy, 

regulation, and guiding clinical practice towards the strategic adoption of innovations 

of highest value.  

 

The next chapter, Chapter 3, presents in detail the development and validation of the 

first two network-based, surgical innovation-specific metrics, namely the structural 

virality and innovation index aimed at measuring the diffusion of surgical innovation 

and evidence-based innovation value, respectively.  
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3.	  Network	  analysis	  of	  surgical	  
innovation:	  The	  development	  and	  
validation	  of	  novel	  surgical	  
innovation	  metrics	  
 

3.1	  Introduction	  	  
Innovation has long occupied centre stage in the medical and health sciences. In 

surgery, it has been held up as a catalyst of unprecedented advances that have led to 

substantial improvements in healthcare delivery and patient outcomes.1 A variety of 

surgery-specific innovation frameworks have been proposed, among which the 

IDEAL is the most widely implemented paradigm that categorises surgical innovation 

into distinct stages.68 Most existing frameworks, however, suffer from a unifying 

limitation. Their qualitative nature has thwarted comparative assessments of the 

innovation-generating potential of individual scientists, research groups, institutions, 

and medical specialties. Moreover, earlier attempts to assess surgical innovation 

solely through publication and citation counts were premised on the oversimplifying 

assumption of equating innovation value with short-lived surges in popularity, and 

failed to capture the long-term impact of innovation upon healthcare delivery.3 

 

To address these shortcomings, we propose a novel and quantitative network-based 

framework for measuring the value of surgical innovation. To this end, we leverage 

on the structure of the adoption-induced fingerprints produced by diffusion processes 

as they unfold over time.69 Indeed, innovation typically triggers complex diffusion 

processes, driven by social contagion mechanisms, in which individuals’ adoption is a 
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function of their exposure to others’ knowledge, attitude, or behaviour. Diffusion can 

therefore be mapped out as a time-varying cascade of adoptions that propagate from 

individual to individual over potentially many generations of adopters. Any attempt to 

capture how increasingly popular innovations ultimately transform medical care ought 

to explicitly account for the size, structural depth, and breadth of the whole adoption 

cascade underpinning diffusion.70  

 

This chapter aims to make a contribution in this direction by using citation networks 

to study the structural foundations of innovation diffusion in surgery. Drawing on a 

unique and comprehensive dataset on robotic surgery, we propose a novel set of 

network-based measures for uncovering the virality of adoption cascades. We 

demonstrate how these network measures facilitate comparative assessments of 

different robotic surgical procedures in terms of how they diffuse and implement 

innovation. Our framework can therefore play a fundamental role in guiding and 

assisting policymakers, funding bodies, and healthcare providers.  

 

3.2	  Materials	  and	  methods	  
 

3.2.1	  The	  dataset	  
Drawing upon SciVerse Scopus® (Elsevier®, Amsterdam, The Netherlands),71 another 

researcher and I independently extracted all articles concerned with robotics (i.e., 

containing the MeSH terms ‘robot’ and ‘robotic’ in their title, abstract, or keywords) 

across all medical specialties from the start of the database (1974) until December 

2014. We limited the dataset to articles published in scientific journals, and restricted 

the scope of the analysis to the subject area ‘Medicine’. Therefore, any article that did 
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not represent original research studies on robotic surgery was excluded (e.g., review 

article or conference article).  

 

The initial search produced 13,240 publications, of which 9,423 were articles that 

either received or made at least one citation within the broad medical field of robotics. 

Among these, 5,961 articles received at least one citation from another article within 

the field, and can therefore be regarded as ‘sources’ of innovation, whereas 8,158 

articles made at least one citation to another article within the field, and can therefore 

be regarded as ‘adopters’ of innovation (Fig. 6).  

 

 

Figure	  6	  Flow diagram illustrating the search strategy used for generating the citation networks. Note 
that the intersection between the two sets of articles at the bottom used to construct the citation 
networks is non-empty as an article can both cite and be cited.   

 

Using the MeSH terms reported in Table S1 (Appendix 1), each of the 5,961 articles 

that received at least one citation was allocated to one of 16 categories (based on 

surgical specialty and/or procedure). We limited our study only to the ten specialties 

(the terms specialties and procedures are used interchangeably) with at least 100 of 
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the original 13,240 publications. In total, the final dataset includes 4,860 articles. 

Among these, there are 2,101 articles across the ten specialties that received at least 

one citation, and 2,759 articles that do not necessarily belong to any of the ten 

specialties, but are part of chains of citations leading to articles in those specialties 

(Fig. 7, and Appendix 1).  

 

 

Figure	  7	  Scientific production and citations across surgical specialties. Published and cited articles per 
surgical specialty (top panel). Cumulative number of published and cited articles: (a) number of 
published articles over time, (b) number of cited articles over time, (c) number of citations received 
over time by published articles. 

 

 

3.2.2	  Citation	  networks	  and	  diffusion	  cascades	  
In a citation network, the nodes are the articles, and a directed link is established from 

one article to another if the former cites the latter in its bibliography.43,72 A citation 

network can therefore be thought of as a diffusion cascade along which information 

spreads and adoption of innovation propagates.  

 

For each of the 9,423 articles that received or made at least one citation, we 

constructed the diffusion cascade based on the corresponding citation network (Fig. 

8).73,74 In these cascades, each citation-based chain of adoption can be traced back to 
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the seed node representing the original article in which a given innovation was 

introduced (as an idea description or laboratory evaluation) in the first place. The 

structure of these cascades can therefore shed light on the depth and breadth of the 

diffusion process through which innovations, once proposed, built up momentum over 

time.35  

 

 

Figure	  8	  Network of citations.  The network includes 9,423 articles that received or made at least one 
citation. The visualisation of the network was obtained through the network visualisation software 
Gephi© (Gephi© Consortium, Compiegne, France). The size of each node i is proportional to its in-
degree 𝑘!!" (i.e., the number of citations received), and the colour associated with each node denotes 
the surgical specialty it belongs to. The network is partitioned into topological communities that are 
coextensive with surgical specialties (Appendix 1).  
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3.2.3	  Measuring	  broadcast	  and	  viral	  diffusion	  processes:	  Citations,	  cascade	  size,	  
structural	  depth,	  and	  structural	  width	  
Popularity can be gained through two main modes of diffusion: broadcast and viral 

spreading (Fig. 9, panels a and b). While broadcast spreading is dominated by 

processes of bursty adoptions from a single seed article, viral spreading is typically 

characterised by multi-generational branching processes in which any article receives 

a citation from only few others, thus yielding multiple, widespread, and long chains of 

citations extending over time.4  

 

 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   41	  

Figure	   9	  Schematic representation of cascades and real world examples. Top panels: (a) broadcast-
driven diffusion; (b) viral diffusion. In both cases, we calculated the number of citations received by 
the seed node, the size of the cascade, the structural depth, and the structural width of the cascade. 
Bottom panels: two real examples of cascades within (c) thyroidectomy and (d) cardiac surgery. For 
each cascade, we calculated the number of citations to seed article, the cascade size, and structural 
depth and width. The colour of nodes denotes their distances from the seed article (red node). Links 
between nodes carry the colour of the citing node. The size of each node is proportional to the ratio 
between the node’s second-step citations and first-step citations. 

 

 

To investigate broadcast-driven diffusion processes, two measures were quantified. 

First, for each seed article s that received at least one citation, we calculated the total 

number of citations Cits received from any other article in the corresponding cascade 

Cs. Second, for each seed article s, we calculated the fraction of citations Cits,year 

received from any other article in Cs within one year since the date of publication of s.   

 

To uncover the virality of diffusion processes, we computed three measures 

(Appendix 1). First, for each seed article s, we calculated the size 𝑆!! of the 

corresponding cascade 𝐶!, namely the total number of articles in 𝐶! (including seed 

article s). Second, drawing on a classical graph property75 and recent work on online 

diffusion,75 we propose a measure for quantifying the multi-generational nature of 

adoption cascades. Specifically, for each seed article s we define the structural depth 

𝑠𝑑!!of cascade 𝐶!, as the average length of the shortest directed paths between pairs 

of articles in Cs. Formally, for n>1 articles,  

𝑠𝑑!! =
1
𝑙 𝑑

!,!
  

!∈!!

, 𝑖 ≠ 𝑗,
!∈!!

 

where 𝑑
!,!

 denotes the length of the directed shortest path from article i to article j, Cs 

is the set of nodes belonging to the cascade originating from article s, and l is the 

number of directed paths connecting pairs of articles in Cs. So constructed, 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   42	  

𝑠𝑑!!becomes larger as the adopters of the original idea proposed by seed article s are 

farther apart from one another and from s, thus producing a multi-generational 

cascade. An important property of structural depth is that it varies as a function of the 

size of the cascade only under certain conditions (Appendix 1).  

 

Finally, we introduce a measure for quantifying the branching structure of a diffusion 

cascade.70,72,74,76 Specifically, we define the structural width 𝑠𝑤!!of cascade Cs as the 

ratio between the average number of second-step citations (𝑐𝑖𝑡!!
! ) and the average 

number of citations (𝑐𝑖𝑡!!) accrued by articles in Cs. Formally, for n>1 articles,  

𝑠𝑤!! =
𝑐𝑖𝑡!!

!

𝑐𝑖𝑡!!
  .       

Thus, the larger 𝑠𝑤!!, the more widespread and locally dense the diffusion cascade is. 

In particular, 𝑠𝑤!!ranges between zero in the limiting case of the star graph (with no 

second neighbours) and indefinitely large values in cases of branching cascades with 

highly widespread tree-like local structures. 

 

Combined, cascade size, depth and width enable us to capture the multi-faceted nature 

of viral innovation.72,75,76 While cascade size captures the overall popularity of 

innovation based on total number of adopters, structural depth and width shed light on 

how popularity is gained. Specifically, depth captures the multi-generational 

character of diffusion processes. In this sense, innovation becomes viral not simply 

because it is widely adopted, but because it propagates further beyond the first 

generation of initial adopters, typically targeted by extensive media coverage and 

large advertising efforts. Finally, structural width uncovers the branching tree-like 

character of diffusion. In this sense, innovation becomes viral when a large 
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population of adopters ‘infect’ a much larger population, with ripple effects producing 

a rapid, large scale increase in popularity as in viral disease spreading. Thus, these 

three measures jointly quantify virality as a function of: (a) the overall number of 

adopters; (b) the number of generations of adopters; and (c) the contribution of each 

adopter to overall diffusion. This enables us to create ranking lists from the most viral 

innovations to those that only generate short-term surges in popularity and then 

quickly die out. Fig. 9 (panels c and d) shows two real cascades that differ in 

structural virality. 

 

3.2.4	  Measuring	  the	  value	  of	  surgical	  innovation:	  The	  implementation-‐based	  
innovation	  index	  
We propose a novel metric aimed at capturing the intrinsic value of a surgical 

innovation as a function of the degree to which it has reached an implementation 

stage. To this end, a score was attributed to each seed article based on its 

corresponding level of evidence (Appendix 1).64 The US Department of Health and 

Human Services evidence levels were used as they only include numerical values 

(with no lettered subcategories) facilitating classification.64 Further stages of 

implementation were added for pre-clinical categories (description of idea/laboratory 

evaluation, animal, and cadaveric studies), as illustrated in the surgical innovation 

funnel (SIF) in Fig. 4 (Chapter 2). The SIF shows that innovation follows a trajectory 

akin to natural selection whereby as “the going gets tough, the tough get going” (i.e., 

only the fittest among attention-seeking ideas will survive as they move along the 

SIF).77,78 All studies were scored by two independent academic surgeons (G.G. and 

T.A.), and disagreements arbitrated by a third academic surgeon (A.D.). Formally, for 

each surgical specialty g∈G, we define the innovation index as  
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𝑖! =

1
𝑐!∈! ×𝑝!

!

𝑃!

max
!∈!

1
𝑐!∈! ×𝑝!

!

𝑃!

  ×100,   

where 𝑐 ∈ 1,… , 8  is an integer value labeling the ordinal category associated with 

the implementation stage according to level of evidence, is the count of 

publications by surgical specialty appearing in category c, and 𝑃! =    𝑝!
!

!  is the 

total number of publications appearing in category c across all surgical specialties in 

G (Appendix 1). 

 

To validate our innovation index, additional data from the National (Nationwide) 

Inpatient Sample (NIS) database were collected and ranked in terms of the actual 

numbers of robotic procedures performed in the US in 2012 (most recent publically 

available database at the time of analysis). As NIS approximates a 20% stratified 

sample of all discharges from US community hospitals containing data from more 

than seven million hospital stays per year, it can reasonably be used to provide 

empirical support in favour of findings based on our innovation index (Appendix 1).79     

 

3.3	  Results	  
 

3.3.1	  Ranking	  surgical	  innovations	  by	  broadcast-‐driven	  popularity	  
Fig. 10 shows the rankings of robotic surgical procedures in terms of the medians of 

the distributions of: (i) citations received by seed articles (panel a); and (ii) fractions 

of citations received by seed articles within one year since publication (panel b). 

Results from Mann-Whitney U (for citations) and Kolmogorov-Smirnov (for fraction 

g
cp

g
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of citations) tests for comparing pairs of such distributions are not statistically 

significantly different. 

 

 

Figure	   10	  Rankings of surgical specialties. (a) Ranking by citations to seed articles; (b) ranking by 
fraction of citations to seed articles within one year; (c) ranking by cascade size; (d) ranking by 
structural depth; (e) ranking by structural width. Rankings were obtained by using the medians (red 
lines) of the complementary cumulative distribution functions (CCDFs). In case of ties between 
medians, the 75th percentiles (dotted blue lines) were used. The bottom of each panel shows results 
from Mann-Whitney U tests (for citations and size) and Kolmogorov-Smirnov tests (for fraction of 
citations, depth, and width) of independence between pairs of distributions (green color: p<0.05). (f) 
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Sankey diagram representing the ranking of surgical specialties in terms of innovation index. 
Specialties are listed in the left column, with the top-ranked scoring the highest by innovation index. 
The height of coloured bars is proportional to the number of published articles in the corresponding 
specialty. Levels of evidence are listed in the right column, with the top-ranked being the final 
implementation stage. The height of coloured bars is proportional to the number of published articles 
at the corresponding level of evidence across all specialties. The width of the lines connecting a given 
specialty to a given level of evidence is proportional to the number of articles published by the 
specialty at that level of evidence. Green lines refer to contributions of specialties to the final stage of 
implementation.  

 

 

3.3.2	  Ranking	  surgical	  innovations	  by	  virality	  
For each robotic surgical procedure, we measured the size, structural depth and width 

of each cascade, and produced the corresponding frequency distributions. We then 

ranked these in terms of the medians of such distributions (Fig. 10, panels c, d, e). 

Cardiac surgery occupies the top of the rankings, followed by urological procedures, 

specifically prostatectomy, cystectomy, and nephrectomy. Mann-Whitney U test (for 

size) and Kolmogorov-Smirnov tests (for depth and width) were used for comparing 

each pair of distributions (Appendix 1). Cascade size, structural depth, and width of 

cardiac surgery are statistically significantly different from those of all other 

specialties, as occurs with second-ranking prostatectomy (except when compared to 

colectomy). At the other end of the ranking list, thyroidectomy occupies the last 

position, overtaken by transoral robotic surgery (TORS) though the difference 

between the two does not reach statistical significance (p>0·05). Notice that 

differences between any of the three highest-ranking specialties and any of the three 

lowest-ranking ones are all statistically significant (p<0·05).   

 

3.3.3	  Ranking	  surgical	  innovations	  by	  evidence-‐based	  innovation	  value	  
Fig. 10 (panel f) reports a Sankey diagram illustrating the contribution of each 

surgical specialty/procedure to each level of evidence, and the ranking by innovation 

index (Appendix 1). Results suggest that prostatectomy ranks first with the greatest 
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number of Randomized Controlled Trials (RCTs), followed by cardiac surgery, 

hysterectomy, nephrectomy and cystectomy. At the bottom of the ranking list are 

thyroidectomy, TORS, pulmonary lobectomy, and hepatectomy. To validate our 

measure of innovation, we compared the ranking of innovation across surgical 

specialties by innovation index with the ranking based on real world evidence from 

the NIS database, and found a statistically significant correlation (Spearman’s rank 

correlation coefficient = 0·673, p=0·033; Kendall’s tau coefficient = 0·511, p=0·04). 

 

3.3.4	  Comparisons	  across	  surgical	  innovations’	  rankings	  
The ranking of robotic surgical procedures by innovation index closely matches the 

rankings by cascade size, structural depth, and width. We tested the similarity 

between these three pairs of rankings using the Spearman’s rank correlation 

coefficient (respectively, 0·758 (p=0·011), 0·782 (p=0·008), 0·624 (p = 0·054)). 

Interestingly, no statistically significant correlation (p>0·05) was found between 

ranking by either citations or fraction of citations received within one year, on the one 

hand, and ranking by either cascade size, structural depth or width, on the other 

(Appendix 1). Most importantly, there is no statistically significant correlation 

(p>0·05) between the ranking by either citations or fraction of citations within one 

year, on the one hand, and the ranking by innovation index on the other (Appendix 1). 

We also tested the similarity between all pairs of distributions by using the Kendall’s 

tau coefficient, and obtained similar results (Appendix 1).  

 

3.4	  Conclusion	  
Despite the prominent role of innovation in surgery, only limited attention has been 

paid to quantifying its value as a function of diffusion processes and implementation. 
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The study described here has made a three-fold contribution in this direction. First, we 

proposed a novel measure for the value of surgical innovation that directly accounts 

for the evidence-based implementation stage reached in clinical practice. The ranking 

of surgical specialties by this measure was found to closely match the one based on 

real word data (i.e., the NIS database). For example, it is no coincidence that robotic 

prostatectomy and cardiac surgery, widely supported by RCTs, have the highest score 

in the ranking, while robotic thyroidectomy, characterised by a remarkably poor 

uptake in the Western world, occupies the lowest position.80 Second, we introduced a 

novel network-based framework for assessing the structure of adoption cascades. 

Specifically, we proposed measures for quantifying the virality of these cascades. 

Third, we demonstrated that the ranking of robotic surgical procedures by innovation 

value positively correlates with rankings by virality, but not with rankings by 

broadcast-driven popularity. 

 

We focused on robotic surgery for a number of reasons. First, it is a sufficiently recent 

innovative technology so as to play a salient role in most surgeons’ work, at least in 

the Western world. Second, it also boasts a sufficiently long history so as to enable 

the tracing of adoption cascades over time. Moreover, as the robotic surgery market is 

dominated by the da Vinci® surgical robot (Intuitive Surgical®, Inc., Sunnyvale, CA), 

it lies at the interface between different surgical specialties, most of which use 

different versions of the same robot (e.g., standard, S, Si, Xi, SP), thus providing a 

‘common comparator’ when it comes to ranking (the same) innovation as applied to 

different surgical specialties.81  
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Our results can have a number of implications for research, clinical practice, and 

policy. First, by using citation networks to uncover the footprints of adoption 

behaviour, our study opens up new avenues for future work on knowledge transfer 

and sharing, and the way healthcare providers discover, combine, and apply new 

information over time. Second, our study complements and extends existing 

frameworks for surgical innovation, and enables suitable combinations of quantitative 

and qualitative assessments of innovation value. Third, our framework can be easily 

extended to also produce rankings of institutions, research centers, academic surgical 

groups, and even individual surgeons in terms of their ability and potential to produce 

pioneering innovation. From this perspective, our network-based framework can play 

a fundamental role in guiding policy, strategically directing medical research funding, 

and assisting healthcare providers in their efforts to optimise resource allocation and 

improve the quality of healthcare delivery and patient outcomes.82 For example, our 

findings suggest that recently introduced innovations (e.g., percutaneous valve 

implantation technology), with only limited adoption history and yet highly viral 

diffusion cascades, have the potential of redirecting clinical practice, and should 

therefore be sustained by policymakers.  

 

Most importantly, our findings on short-term broadcast-driven popularity should alert 

healthcare providers and policy-makers to the dangers of using mere citation counts 

as predictors of value-generating potential. Seemingly successful research efforts, 

with a disproportionally large number of citations, may quickly die out leaving no 

influential trace over time. By contrast, research that is only mildly successful in the 

short run may well gain in popularity over time, yield wide and multi-generational 
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cascades of adoptions, and ultimately provide the foundation for successful medical 

practice.  

 

A number of limitations in our study should be noted. First, citation networks 

represent but one type of innovation networks. Other networks include co-authorship 

and collaboration networks where nodes represent individual surgeons or institutions. 

Drawing on these networks, one could investigate the structural foundations of 

innovation at the individual level, and the relationship between scientific 

collaboration and innovation diffusion. Second, our measures do not directly account 

for variations in time scales across cascades. Innovations may trigger cascades of 

adoption stretching over various intervals of time, but nonetheless characterised by 

the same degree of virality. Future work shall extend our measures to also account for 

temporal variations in adoption behavior. Finally, a broader family of network 

metrics, including degree correlations among adjacent nodes, will be required to fully 

assess the structure of adoption cascades and the multi-faceted value of surgical 

innovation. 

 

In conclusion, our study has demonstrated that network analysis offers unique new 

opportunities for understanding, modeling and measuring surgical innovation, and 

ultimately for assessing and comparing the generative value of different specialties. 

When evidence-based data are difficult to collect or not yet available, a suitable 

methodological substitute is needed to inspire and guide the decisions of 

policymakers, funding bodies, physicians, and healthcare providers. Our study is an 

important first step in this direction.    
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3.5	  Chapter	  summary	  
 

The qualitative nature of existing approaches to the study of surgical innovation has 

thwarted accurate evaluations within and across specialties. Earlier studies based on 

publication and citation counts failed to offer measures predicated on the role 

innovation plays in advancing healthcare practice. A more rigorous framework is 

needed in which an implementation-based value of innovation can be uncovered 

based on the structure of the entire diffusion processes triggered by adoption 

behaviour.  

 

Our study draws on a comprehensive dataset including all articles concerned with 

robotic surgery (1974 – 2014). For each of the 9,423 articles that received or made at 

least one citation, we constructed the citation network underlying the time-varying 

cascade of adoptions. We assessed the virality of each cascade by measuring its size, 

structural depth and width. Each cascade was then associated with an innovation 

value reflecting the stage occupied by the corresponding seed article in the surgical 

innovation funnel.  

 

Rankings of surgical specialties by cascade size, structural depth and width were 

found to correlate closely with the ranking by innovation value (Spearman’s rank 

correlation coefficient = 0·758 (p=0·01), 0·782 (p=0·008), 0·624 (p = 0·05), 

respectively) which in turn matches the ranking based on real world data from the 

National Inpatient Sample (Spearman’s coefficient = 0·673; p=0·033). No 

statistically significant correlation was found between ranking of specialties by 
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innovation value and rankings by mere citation counts and fraction of citations 

received within one year since publication.  

 

The virality of adoption cascades is the structural signature of truly innovative 

procedures, while conventional measures based on short-term popularity are poor 

predictors of innovation value. Our study can assist policymakers and funding bodies 

in their efforts to optimise resource allocation and improve healthcare delivery. 

 
 
The next chapter, Chapter 4, presents a different type of surgical innovation networks, 

namely collaboration networks. By building and analysing the real world 

collaboration network in robotic surgical research, the aim is to demonstrate how this 

can be used in practice to nurture collaborations that foster surgical innovation.    
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4.	  Surgical	  innovation	  in	  the	  era	  of	  
global	  surgery:	  Network	  analysis	  of	  
real	  world	  global	  research	  
collaboratives	  
 

4.1	  Introduction	  
 

As a result of recent technological and computational advances and the exponential 

rate at which new knowledge is generated, the ‘lone innovator’ model no longer 

represents a suitable paradigm for scientific production.83 In the modern world, 

innovation is increasingly the outcome of a collaborative process.84 This is especially 

the case for surgical innovation that has been unfolding at a global scale, within a 

complex network of international collaborations.85-87  

    

The aim of collaborative efforts is the generation of social capital. The definition and 

generative mechanisms of social capital have long been the subject of debates and 

controversies within the social sciences.88,89 Typically, scholars tend to converge on 

the idea that social capital refers to the value that individuals, groups, or organisations 

can derive from the underlying social relations.90 In the context of surgical research, 

social capital can relate to accessing data, expertise, knowledge, or any other type of 

resources that become available through specific collaborative patterns and facilitate 

knowledge creation and innovation.  
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Surgical innovation networks are complex systems, typically consisting of hundreds 

or thousands of organisations dispersed across the globe forging various types of 

relationships with one another.87 Network science offers a theoretical and 

methodological backdrop that has recently been widely used to study collaboration 

and innovation in a variety of fields. However, a network approach to examining 

surgical innovation has been largely neglected.31,91  

 

The study in this chapter applies network analysis to a real world global collaboration 

network in robotic surgery. The aim is to familiarise surgeons with network analysis 

(of collaboration networks this time) and demonstrate how this approach can be used 

to devise effective strategies towards the establishment of partnerships that can 

enhance research impact, facilitate innovation and advance patient care.   

 

4.2	  Materials	  and	  methods	  
 

4.2.1	  The	  dataset	  
 

This study draws on the Web of Science® (WOS) platform (Clarivate Analytics, 

Philadelphia, PA). All articles on robotic surgery were extracted through the use of 

the MeSH terms: “robot OR robotic OR robot assisted OR robotic assisted OR 

robotically assisted OR robot-assisted OR robotic-assisted OR robotically-assisted”. 

The Research Area was confined to “Surgery” and the Document Types to “Article”.  

 

The search was performed on 17th of January 2017, and produced 3,889 publications 

(peer-reviewed articles) published between July 1988 and January 2017 (Fig. S1, 
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Appendix 2). These were all used for constructing the co-authorship network. Articles 

were generated from 1,700 organisations nested within 62 countries, in turn nested 

within 6 geographical regions (Appendix 2).  

 

4.2.2	  The	  surgical	  collaboration	  network	  	  
 

The collaboration network was constructed using VOSviewer© (Leiden University, 

Leiden, the Netherlands), a software developed specifically for the study of scientific 

collaboration networks. In the network, each node represents an organisation, and a 

link between two nodes represents collaboration between the corresponding 

organisations. As co-authorship has been shown to be a good proxy of 

collaboration,92,93 links between nodes were based on co-authorship of articles. The 

resulting network is weighed: the value (or weight) of a collaborative link increases as 

a function of the intensity of collaboration (Fig. S2, Appendix 2).  

 

4.2.3	  Outcome	  measures	  
 

For each organisation, two outcome measures were computed: (i) the research impact; 

and (ii) the innovation index. These measures were computed as follows:    

 

-‐ Research impact: Research impact was measured as the sum of normalised 

citations received by all articles (co-)authored by scholars affiliated with a 

given organisation in each year. To obtain normalised citations, the citation 

count for each publication in a given year was divided by the average number 

of citations obtained by all articles published in the same year. The greater the 

sum of normalised citations for a given organisation, the greater the 
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organisation’s research impact (i.e., normalised citations are used to measure 

impact).  

 

-‐ Innovation index: The innovation index represents a recently validated metric 

used to evaluate and rank surgical innovation (see Chapter 3 and Table S2, 

Appendix 2).39 It captures the value of the innovative output produced by an 

organisation as a function of the degree to which it reached an implementation 

stage (Figs. S3-S4, Appendix 2). Thus, the greater the innovation index of a 

given organisation, the more innovative the organisation’s surgical research 

output.   

 

For a detailed description of how each performance metric was calculated, 

please see Chapter 3 and sections S.3.1 and S.3.2 in Appendix 2. 

 

4.2.4	  Network	  measures	  
 

Two established network measures were computed: (i) the clustering coefficient; and 

(ii) closeness centrality. These measures were defined as follows: 

 

-‐ Local clustering coefficient: The local clustering coefficient quantifies how 

closed an organisation’s ego-centered network is (i.e., the network including 

connections between the organisation and its partners as well as connections 

between these partners) enabling assessment of the extent to which an 

organisation’s collaborators also collaborate with each other or, alternatively, 

the extent to which an organisation spans structural holes separating 

collaborators. The higher the local clustering coefficient of an organisation, 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   57	  

the more closed the organisation’s ego-centered network is. More specifically, 

the local clustering coefficient of an organisation was defined as the ratio 

between the number of actual triangles containing the organisation and its 

neighbours, and the maximum possible number of such triangles. A 

generalised weighted clustering coefficient was calculated to take into account 

the weights of links (see Appendix 2). To facilitate interpretation, all values of 

the generalised weighted clustering coefficient were standardised.94 Measuring 

the density of triangles in an organisation’s local network uncovers how open 

or closed the network is, and the extent to which the organisation acts as the 

knowledge broker between otherwise disconnected organisations in the 

collaboration network.  

 

-‐ Closeness centrality: The closeness centrality of an organisation measures how 

close the organisation is to all other organisations in the collaboration 

network. The higher an organisation’s closeness centrality, the greater the 

organisation’s access to the knowledge (or data, or any other resource) 

provided by other organisations in the collaboration network, and thus the 

greater the organisation’s influence on others as a result of its structural 

position.95 The generalised weighted version of closeness centrality was used 

to account for the weights of links (see Appendix 2).96  

 

For a detailed description of how each network metric was calculated, please see 

sections S.3.3 and S.3.4 in Appendix 2. 

 

4.2.5	  Measuring	  the	  geographical	  dispersion	  of	  collaborations	  	  
 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   58	  

For each organisation, the geographical entropy of collaborations was computed to 

capture the geographical dispersion of the organisation’s collaborators. An 

organisation’s geographical entropy increases as the organisation collaborates with 

other organisations located in more countries and devotes an equal amount of 

collaborative effort towards each of these countries (Appendix 2). For a detailed 

description of how geographical entropy was measured, please see section S.3.5 in 

Appendix 2.  

 

4.2.6	  Measuring	  academic-‐industry	  collaborations	  	  
 

All organisations that were publicly registered as companies and classified as 

“corporate” entities in the WOS platform (through the InCites© intelligence tool) were 

identified.97,98 For each organisation, the sum of the organisation’s collaborative 

efforts towards other industrial (corporate) partners during the study period were 

calculated. For a detailed description of how the strength of industrial collaborations 

was measured, please see section S.3.6 in Appendix 2.  

 

4.2.7	  Control	  variables	  
 

Many other organisational characteristics may influence scientific performance. This 

study controlled for the following two additional variables: (i) each organisation’s 

institutional type (e.g., academic, corporate, health, etc. as classified by the InCites© 

intelligence tool in the WOS platform) and (ii) a measure of volume, here referred to 

as ‘number of articles in WOS’, given by the number of all articles, beyond robotic 

surgery, published by each organisation that the InCites© intelligence tool could 

retrieve in the WOS database (see section S.3.7 in Appendix 2). Controlling for 
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research volume enables the association between collaboration network and both 

citation count and innovation to be investigated by keeping the number of 

publications constant. 

 

4.2.8	  Statistical	  analysis	  
 

Maximum-likelihood estimates of two hierarchical three-level random-intercept 

models were computed in which organisations were nested within countries, in turn 

nested within geographical regions. A random-intercept structure was combined with 

heteroskedastic level-1 residuals by letting the variances of these residuals be a 

function of the organisation’s institutional type. All models were estimated using 

STATA 15 (StataCorp LP, College Station, TX, USA). The significance threshold 

was set at p < 0.05.  

 

 

4.3	  Results	  
 

Of the 1,700 organisations, 1,543 were connected through at least one collaboration. 

The overall network comprised of 6,000 collaborative links. Fig. 11 shows two 

extreme examples of ego-centered network, one characterised by a closed structure 

(𝑐𝑐!"# = 1) rich in third-party relationships (Fig. 11A), and the other by an open 

structure (𝑐𝑐!"# = 0), rich in brokerage opportunities (Fig. 11B).    
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Figure	  11	  Illustrative examples of the two extreme cases of a closed ego-centered network (panel A) and 
an open ego-centered network (panel B). The closed network is rich in third-party relationships and 
closed triangles: all nodes connected to ego (yellow node) are also connected with each other. The 
open network is rich in brokerage opportunities and open triads: ego (orange node) acts as the broker 
between all contacts that would otherwise be unable to reach one another. Ego in the closed network 
has therefore a clustering coefficient equal to one, while ego in the open network a clustering 
coefficient equal to zero.  

 

The collaboration network among organisations is shown in Fig. 12. While the 

highest-performing organisations (e.g., University of Pittsburgh and Yonsei 

University) achieved the largest research impact (node size) and innovation value 

(node colour), Fig. 12A suggests that the correlation between the two performance 

measures is far from perfect. Successful organisations (Fig. 12C) appear to be better 

connected than less successful ones (Fig. 12B), which are more sparsely connected.  
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Figure	  12	  The global robotic surgery collaboration network. The size of each node is proportional to 
the average normalized citations of the corresponding organisation, while the colour is proportional 
the innovation index. The weight of each link (i.e., the thickness of the line connecting any two nodes) 
is proportional to the normalised count of collaborations between the connected pair of organisations. 
Panel A shows the largest connected component of the collaboration network. Panel B shows a subset 
of less successful organisations, more peripheral and poorly connected. Panel C shows a subset of 
more successful organisations, highly connected and centrally located within the global network. 

 

Table 1 shows the maximum-likelihood estimates of the coefficients and standard 

errors of the two hierarchical random-intercept models of research impact and 

innovation. The first two estimated parameters in both models suggests that both 

citations and innovation value at the organisational level were statistically 

significantly associated with the organisation’s position in the collaboration network. 

The local clustering coefficient at the organisational level was negatively associated 

with both performance measures, although only the association between clustering 

and innovation reached statistical significance. Both geographical entropy and 

industrial collaboration were positively and statistically significantly associated with 

both research impact and innovation. Estimates for all remaining fixed-effect and 

random-effect parameters are shown in Tables S3 and S5 in Appendix 2 (see also 

Tables S4 and S6-S8 for robustness checks).  
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Fig. 13 shows the topology and properties of four ego-centered networks of selected 

organisations that differed in terms of both innovation index and clustering 

coefficient. For instance, Fig. 13A suggests that Leiden University was characterised 

by a closed ego-centered network in which the collaborators tended to collaborate 

with one another, while Imperial College London (Fig. 13C) was positioned in a more 

open network, rich in structural holes and opportunities for brokerage between 

collaborators. In turn, Imperial College London was associated with a higher 

innovation index than Leiden University, which indicates that organisations can 

extract value from the structural cleavages separating their partners.  

 

 

Figure	  13	  Ego-networks of four selected organisations, with decreasing values of clustering coefficient 
and increasing values of innovation index. In each panel, the ego-centered networks are identified by 
the yellow circles (above), and zoomed out (below). 

 

 

Fig. 14 shows the association between closure of ego-centered networks (node size) 

and both measures of performance (node colour). Fig. 14A does not suggest an 

unambiguous relationship between network closure and research impact, as both large 
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and small nodes can be associated with high performance. Fig. 14B, however, 

indicates that nodes within closer structures were associated with lower values of 

innovation index. Organisations that produced more innovative outcomes were those 

that spanned structural holes between collaborators.  

 

 
Figure	   14	   The association between closure of ego-centered networks (i.e., size of nodes) and both 
measures of performance (i.e., colour of nodes). In panel A, the colour is proportional to research 
impact, while in panel B to the innovation index. In both panels, the size of each node is proportional 
to the number of closed triangles including the node. While there is no clear-cut relationship between 
network closure and research impact (i.e., there are both large and small red nodes in panel A), nodes 
in closer structures are associated with lower values of innovation index (i.e., most large nodes tend to 
be the blue ones in panel B).  
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 Research impact (snc) Innovation value (ii) 
 

Clustering coefficient (cc) - 0.4027 
(0.6165) 

- 0.0820    
(0.0284) 

Closeness centrality (l) 6.0782    
(0.7253) 

0.2166    
(0.0332) 

Geographical entropy (𝜀) 10.5599    
(0.7564)    

0.1629    
(0.0368) 

Industrial collaboration (ic) 5.2104    
(1.2837) 

0.1967    
(0.0686)    

Number of articles in WOS (v) 0.0015 
(0.0022) 

0.0001   
 (0.0001) 

Number of observations* 639 639 
Table	   1	  Maximum-likelihood estimates from three-level random-intercept linear models of research 
impact (measured by the sum of normalised citations, snc) and innovation value (ii). Below each 
estimated parameter, the corresponding standard error is reported within brackets. Estimated 
parameters that are statistically significant at the 5% level are shown in bold.  

*The regression models were estimated based on a sample of 639 organisations as these were the 

observation units with non-missing values across all the covariates used (see Appendix 2 for details). 

 

4.4	  Discussion	  
 

The study in this chapter was concerned with social capital in surgical research, and 

has uncovered structural sources of research impact and innovation. The study 

examined the relative benefits of two opposing structures - closed and open networks 

- by analysing the ego-centered networks of all organisations that published research 

on robotic surgery between 1988 and 2017. The association between local clustering 

coefficient and a two-fold measure of research performance (impact and 

implementation-based innovation value) was investigated. Closed structures, rich in 

third-party relationships, were negatively associated with both measures, although 

only the association with the latter was statistically significant.  
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It is difficult to identify the reason(s) underlying these findings. A plausible 

explanation (though this was not tested and would form the subject of a separate 

study) is that nodes in a closed structure are more likely to cite each other, thus 

inflating their research impact (citations), which would explain the lack of statistical 

significance of the negative association between clustering and research impact. At 

the same time, a closed structure would naturally limit the opportunities for brokerage 

between collaborators and in so doing compromise their ability to translate novel 

ideas, products, or surgical procedures they may have developed and published into 

truly innovative outcomes that could subsequently be implemented on a large scale. 

This would explain the negative and statistically significant association between 

closed structures (clustering) and innovation.    

 

Closed networks may still be important to surgical innovation. They may facilitate 

distributed understanding, distributed ownership, and the application of complex 

ideas.89 However, the present findings suggest that open networks and brokerage 

opportunities are vital for fostering truly innovative outcomes. Open networks 

enhance innovation by providing the necessary conditions and opportunities for novel 

combinations or rearrangements of ideas, technologies, processes, and for 

transforming them into well-established, widely implemented products, medical 

devices, or surgical procedures. This is achieved through a variety of mechanisms 

including access to external knowledge, data, infrastructure, and/or expertise not 

available ‘in-house’, and the sharing of otherwise prohibitive costs and risks that 

represent two of the greatest barriers to innovation.91 These mechanisms are 

particularly salient to modern surgical research which is expensive, highly regulated, 

and increasingly reliant on the diverse inputs from individuals across a variety of 
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backgrounds (including scholars not directly related to surgery such as engineers, 

computer scientists, and statisticians).4  

 

This study has shown a positive and statistically significant association between 

closeness centrality and organisational performance. This has important implications 

for strategy and policy as it can assist both academic surgeons and policymakers in 

their selection of organisations that have better access to others.95 For instance, 

focusing on closeness centrality can prove crucial in a number of scenarios in surgical 

research such as the optimal set up of multi-centre RCTs where recruitment can be 

challenging and a large sample size needed.43  

  

The findings have also highlighted the importance of maximising an organisation’s 

geographical dispersion in terms of the location of research partners. Geographical 

entropy represents a complementary, yet distinct, dimension to structural openness. It 

reinforces the positive association between brokerage and performance by shedding 

light on the benefits that an organisation can extract from a (geographically) diverse 

collaboration network (see Appendix 2).  

 

It is encouraging to see that global surgery has been recently gaining increasing 

attention through a number of collaborative initiatives.85,86 While these initiatives 

have been shown to provide well-known benefits to surgical education and global 

health (through the specialised service, training and equipment provision to the 

developing world),85,86 this study suggests that they can also enhance the research 

impact and innovative output of all partners involved. Thus, this study’s findings have 

important implications as they can inform policymakers in their efforts to devise 
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effective collaborative international strategies and surgical research policies which 

should aim to incentivise organisations to collaborate more globally, also with 

partners in the developing world.     

 

This study has demonstrated a positive association between academic-industrial 

partnerships on the one hand, and research impact and surgical innovation on the 

other. In the corporate sector, such partnerships are actively sought, as they are known 

to maximise profits. From the perspective of academia, however, there is more 

ambiguity and controversy on their advantages.99 On average, industry contributes 

less than 10% of funding for academic research, and joint academic-industrial 

partnerships contribute to only a small fraction of the overall knowledge generated.97 

Many possible reasons for this have been put forward. The most widely accepted one 

relates to corporate pressures diverting academic researchers away from their 

scientific efforts, towards commercialisation.97 

 

The positive association between collaboration with industry and research 

performance identified in this study may be rooted in key differences between 

innovation in surgery and in other fields. Surgical research and the introduction of 

new technology (such as robotic surgery) can be expensive.43 This, combined with the 

fact that governmental funding for healthcare research allocated to surgery tends to be 

no higher than 5% (3% in the USA and 5% in the UK), engenders the need for 

seeking alternative sources of funding.100,101  

 

The medical device industry, with its continuing steady growth in revenues (projected 

to reach $398 billions by 2023) amid periods of economic downturns across the 
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Western world, represents an ideal collaboration partner in some respects.9 Not only 

does industry possess the scale of funds that surgical research often needs (as well as 

other vital resources including laboratories and human capital) but it also has a strong 

interest in investing in surgical research (through intellectual property acquisition and 

subsequent commercialisation of innovations).9  

 

The internal organisational mechanisms of corporations make them highly 

experienced in managing various types of resources. This is likely to result in a more 

efficient division of labour,97 and higher research productivity of academic surgeons, 

typically constrained by demanding clinical  and educational commitments. Through 

the provision of support staff to assist with time-consuming, bureaucratic activities 

(such as the drafting of applications for ethical committee approval, the performance 

of standardised laboratory work, and patient recruitment and follow-up), industrial 

collaboration can further free academic surgeons to concentrate on their research.97 It 

is encouraging to see that world-leading universities have already recognised the 

strategic salience of collaborations with industrial partners, and have set up dedicated 

liaison offices and even innovation hubs to act as ‘incubators’ for innovation.102,103 

Academic institutions involved in surgical innovation should be encouraged to follow 

their example.  

 

Despite those encouraging findings, it is important to recognise that industry 

partnerships may not always be beneficial. Caution should be exerted, especially 

when corporate research funding forms part of the partnership because this will 

inevitably promote conflicts of interest (including those concerned with intellectual 

property and ownership of the innovations)104 as the goals of industry and academia 
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do not often align – the former is predominantly driven by commercial incentives 

whilst the latter by serving the public good.105 Problems can range from subliminal 

biases (e.g., surgeons opting for expensive medical devices in the absence of evidence 

on superiority to existing ones) all the way to research misconduct (e.g., companies 

suppressing the publication of trial results not favouring their sponsored products) 

generating ethical concerns.106 It is however reassuring that the severity of these 

problems is now widely recognised and a number of measures have been taken to 

counteract them. Examples include the establishment of the Physician Payments 

Sunshine Act and initiatives from the International Committee of Medical Journals 

Editors (ICMJE) regarding clinical research governance that include the compulsory 

registration of all clinical trials and submission of conflicts of interest disclosure 

forms by all authors.107  

 

The present study has a number of strengths and weaknesses. Its main strength lies in 

the novel network-based perspective on surgical research. Network science provides a 

comprehensive array of theories and methods for mapping and understanding 

collaboration patterns.108 Despite its extensive use across the social sciences and 

innovation studies,83 its application to the study of collaboration patterns in healthcare 

has so far remained relatively limited with only a handful of published 

studies.92,95,109,110 In particular, most studies on surgical collaboration did not rely 

upon network metrics beyond the mere number of participating organisations and 

their corresponding countries.85,87,111-114 This study took a step in this direction by 

computing both local (i.e., clustering coefficient) and global (i.e., closeness centrality) 

measures that account not only for each organisation’s connections with collaborators 

but also for connections these collaborators have with one another (in the 
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organisation’s ego-centered network) and with other organisations (in the global 

network).  

 

This study also engaged with current debates and controversies on social capital and 

its structural sources. The fundamental role of networking in surgical research for 

both innovation and patient care is widely recognised,87 and an increasing number of 

national and global surgery initiatives have been recently established.85,111-114 

However, which type of networking pattern (e.g., open vs. closed structures) matters 

has remained largely unexplored. The present study investigated the relative benefits 

of different collaboration patterns for both research impact and surgical innovation. 

The findings have suggested that both collaborative brokerage and geographical 

boundary spanning are catalysts of surgical innovation. Much of the network and 

innovation literature has failed to distinguish between these two mechanisms, 

although they remain conceptually and empirically distinct. This study contributed to 

disentangle them by suggesting that surgical innovation can be further enhanced when 

boundary-spanning leaders leverage collaborative brokerage, and brokering leaders 

amplify the spatial diversity of their collaborative network.  

 

Limitations included the fact that the collaboration network was constructed based on 

co-authorship, and therefore did not reflect any other form of informal intellectual 

exchange (e.g., mentorship, discussion, informal commentary) that did not result in a 

publication. Fully accounting for the problem of the opaqueness of collaboration 

would inevitably be an arduous task, especially when conducted on a large scale, and 

I believe the results still remain fairly robust against possible biases that using co-

authorship as proxy for collaboration might induce.92,93 Another limitation of the 
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current analysis lies in its cross-sectional nature. Future work might consider 

investigating the evolution of the collaboration network over time and uncovering the 

dynamics of social capital. Collaboration was only evaluated at the meso 

(organisational) level. It will be interesting for future studies to evaluate structural 

sources of innovation and research impact at the micro (individual) and macro 

(country) levels as well as sources of other innovations in surgery (e.g., augmented 

reality for intraoperative navigation in robotic surgery and 3D printing).  

 

4.5	  Conclusion	  
This study can be regarded as a proof of concept suggesting how network analysis can 

be used in surgical research to foster innovation and thus patient care through 

strategic partnerships. The findings, showing that innovation is inherently a social 

process, have a number of implications that can potentially inform policymakers and 

funding bodies. Evidence was provided on the ways in which existing collaborative 

efforts can be adjusted and future ones strategically planned to maximise research 

performance.  

 
 

4.6	  Chapter	  summary	  
 
 
This chapter presented a novel network-based framework for the study of 

collaboration in surgery and demonstrated how this can be used in practice to help 

build and nurture collaborations that foster innovation.  
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Surgical innovation is a social process that originates from complex interactions 

among diverse participants. This has led to the emergence of numerous surgical 

collaboration networks. What is still needed is a rigorous investigation of these 

networks and of the relative benefits of various collaboration structures for research 

and innovation.  

 

Network analysis of the real world innovation network in robotic surgery was 

conducted in this study. Hierarchical mixed-effect models were estimated to assess 

associations between network measures, research impact and innovation, controlling 

for the geographical diversity of collaborators, institutional categories, and whether 

collaborators belonged to industry or academia.  

 

The network comprised of 1,700 organisations and 6,000 links. The ability to reach 

many others along few steps in the network (closeness centrality), forging a 

geographically diverse international profile (network entropy), and collaboration with 

industry were all shown to be positively associated with research impact and 

innovation. Closed structures (clustering coefficient), in which collaborators also 

collaborate with each other, were found to have a negative association with 

innovation (p<0.05 for all associations). 

 

In the era of global surgery and increasing complexity of surgical innovation, this 

study highlights the importance of establishing open networks spanning geographical 

boundaries. Network analysis offers a valuable framework for assisting surgeons in 

their efforts to forge and sustain collaborations with the highest potential of 

maximising innovation and patient care. 
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The following chapter, Chapter 5, involves the analysis of collaboration networks in 

surgical innovation at the macro (country) level. This is performed to study the UK’s 

existing research collaboration networks on a global scale, and through a number of 

simulation models (based on different scenarios), measure the impact that Brexit may 

have on the UK’s global research and innovation performance in the long-term. 

Associated policy implications are also discussed.     
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5.	  Quantifying	  the	  implications	  of	  
Brexit	  for	  research	  collaboration	  and	  
policy	  through	  network	  analysis	  and	  
simulation	  modelling	  
 

5.1	  Introduction	  	  
 

On 23rd June 2016 the United Kingdom (UK) voted to leave the European Union 

(EU) through the EU referendum, a process known as ‘Brexit’. Since then there has 

been a dramatic rise in the number of publications on Brexit and its potential impact 

on the UK’s performance across various sectors.115-117 Although quantitative studies 

have been produced on the impact that Brexit might have on the UK’s economy, 

trade, and industries118-122 the majority of articles in the scientific and healthcare 

literature are editorials and letters expressing individuals’ as well as scientific and 

industrial bodies’ concerns.115,123-127 Even the handful of studies on the Brexit impact 

on healthcare, research and innovation are limited to narrative descriptions of possible 

scenarios, and thus fail to provide any measurement of the reported expected 

impact,116,128,129 with the exception of one recent study in the field of 

scientometrics.130 To preserve the UK’s global leading position in healthcare 

innovation, measurement of impact is needed that can inspire the development of a 

coherent set of policies for each scenario.  

 

As robotics features at the top of the UK Government’s Eight Great Technologies 

initiative,131 this study aims to quantify the contribution of the EU to the UK’s success 
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as a global leader in robotic surgery.132 Simulation-based studies have been carried 

out to evaluate how the UK’s prominent position could be preserved (or even 

improved) in the event that UK-EU research collaborations should deteriorate 

significantly. These studies leverage network analysis to provide visual maps and a 

quantitative assessment of collaborative patterns and their association with 

innovation.39 The findings may assist policymakers in directing the UK’s international 

strategy post-Brexit with a view to ensuring downsides are mitigated and 

opportunities beyond the EU seized from 1 January 2021 when the current transition 

period ends.  

 

5.2	  Materials	  and	  methods	  
 

5.2.1	  The	  dataset	  
All articles on robotic surgery were extracted from the Web of Science® platform 

(Clarivate Analytics, Philadelphia, PA).  The search was performed on 17th of January 

2017, and produced 3,866 peer-reviewed articles published between July 1988 and 

January 2017 (see S.1, in Appendix 3 for details), which were then used to construct 

the international collaboration network. Any article that did not represent original 

research studies on robotic surgery was excluded (e.g., review article or conference 

article). 

 

 

5.2.2	  The	  international	  collaboration	  network	   	  
The international collaboration network was constructed and analysed using 

MATLAB® (The MathWorks, Inc., Natick, MA). As co-authorship has been shown to 
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be a good proxy for collaboration,92,93 the links between nodes are based on co-

authorship of articles by co-authors. First, a network comprising 2,397 collaboration 

links connecting 772 organisations across 56 countries and 7 geographical regions 

was constructed (Appendix 3). Links and nodes were then aggregated to produce a 

collaboration network between countries. In this network, each node represents a 

country, and links between nodes represent collaborations between countries. This is a 

weighted network in which each link is associated with a value reflecting the intensity 

of the collaboration between the connected nodes (see S.2 in Appendix 3 for details). 

 

5.2.3	  Outcome	  measures	  
Two outcome measures were calculated at the national level: 

 

- Research impact (𝑠𝑛𝑐!): This was measured as the sum of the research performance 

of all organisations residing in a given country. In turn, for each organisation, 

academic performance was measured by computing the sum of the normalised 

citations received by all articles published by the organisation across the years. To 

obtain normalised citations, the citation count for each publication in a given year was 

divided by the average number of citations obtained by all articles published in the 

same year (see S.3.1 and S.4 in Appendix 3 for details). 

 

- Innovation index (𝑖𝑖!): This metric was specifically developed for the measurement 

of surgical innovation. It is based on surgical implementation stages and levels of 

evidence associated with articles, and was validated against real world data from the 

clinical setting. We measured the innovation index of a given country as the sum of 

the innovation indices of all organisations residing in the country. In turn, for a given 

organisation, the innovation index was computed as a function of the innovative value 
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of all articles published by authors affiliated with that organisation (see S.3.1, 

Figs.S2-S3, and Table S2 in Appendix 3 for details).39  

 

5.2.4	  Network	  measures	  
A number of measures were computed to capture the structural position that each 

country occupies in the global collaboration network (see S.5.1-S.5.3 in Appendix 3 

for details).39,88  

 

- Degree (ki): This is defined as the number of a node’s direct links to other nodes, 

i.e., the number of countries a focal country collaborates with. A country i has a link 

with a country j if there is at least one organisation in 𝑖 that collaborates with at least 

one organisation residing in 𝑗. Thus, a link between two countries i and j implies that 

there are at least two scientists, one affiliated with an organisation in country i and the 

other in country j, that have co-authored at least one publication, thus generating a 

collaborative link between the corresponding countries (see S.5.1 in Appendix 3 for 

details). 88  

 

- Effective size (esi): This measure captures the extent to which a focal node is 

connected to non-redundant nodes, thus reflecting brokerage opportunities between 

contacts. A node’s links to neighbours are redundant when the neighbours are already 

connected to each other and can thus bypass the focal node. Following Latora et al. 

(2013),14,88 we defined a node i’s effective size as a function of the node’s degree ki 

and its binary local clustering coefficient 𝑐𝑐! (defined as the ratio between the number 

of actual triangles centred on the node i and the maximum possible number of such 

triangles; see S.5.2 in Appendix 3 for details).108 Thus, the more a node’s neighbours 

are connected with each other, the more closed triangles are centred on the node, and 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   78	  

the less the effective size of the node is (see S.5.3 in Appendix 3 for details).  

 

- Efficiency (ei): This is the normalised effective size of a node i, i.e., the ratio 

between node i’s effective size 𝑒𝑠!   and its degree 𝑘!. To facilitate the interpretation of 

the estimated regression coefficients, all values of efficiency were standardised (see 

S.5.3 in Appendix 3 for details). 

 

5.2.5	  Geographical	  dispersion	  of	  collaborations	  
To capture the geographical dispersion of a country’s collaborative activities, the 

geographical entropy 𝜀! of country i’s collaborations was computed (see S.5.4 in 

Appendix 3 for details).133 A country’s geographical entropy increases as the country: 

(i) collaborates with (organisations located in) more countries; and (ii) devotes an 

equal amount of collaborative effort towards each of these countries. To facilitate the 

interpretation of the estimated regression parameters, all values of geographical 

entropy were standardised. 

 

5.2.6	  Control	  variables	  
Two additional country-level characteristics were controlled for: (i) average 

contribution to publication of international collaborators, 𝑝!!
!"# , i.e., the degree to 

which international collaboration contributed on average to an article published by 

country i; and (ii) average number of publications per domestic organisation, 𝐴!"#! , 

i.e., the ratio between the total number of articles published by country i and the total 

number of unique organisations in country i (see S.5.5 and Fig.S4 in Appendix 3 for 

details). Moreover, fixed effects for countries’ geographical regions were estimated.  
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5.2.7	  Statistical	  analysis	  
A summary of the names, symbols and interpretation of all dependent and 

independent variables used in the regression analysis is provided in Table 2. To 

investigate the association between brokerage and geographical entropy on the one 

hand and research impact and innovation on the other, efficient generalised methods-

of-moments (GMM) instrumental-variables two-step estimators were computed that 

are robust to heteroskedasticity (see S.6. for details). For country i, we estimated the 

following two models: 

𝑠𝑛𝑐! = 𝛽! + 𝛽! 𝑝!!
!"# + 𝛽! 𝐴!"#! + 𝛽!𝑒! + 𝛽!𝜀! + 𝑑!,!𝛽!

!!

!!!

+ 𝑢! 

and 

𝑖𝑖! = 𝛽! + 𝛽! 𝑝!!
!"# + 𝛽! 𝐴!"#! + 𝛽!𝑒! + 𝛽!𝜀! + 𝑑!,!𝛽!

!!

!!!

+ 𝑢! , 

where 𝑝!!
!"# , 𝐴!"#! , 𝑒𝑠! , and  𝜀!  are the covariates (as defined in the previous 

sections; see also Table 2), 𝑑!,! is the dummy variable for the k-th geographical 

region of country i, 𝛽! to 𝛽!! are fixed parameters, and 𝑢! is the country-level error 

term. All models were estimated using STATA 15 (StataCorp LP, College Station, 

TX, USA).  
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Name of variable Symbol 
 

 

Variable description 
 

Research impact snci Sum of normalised citations received 
by all articles published by all 
organisations in country i across the 
years 

Innovation index  iii Evidence-based innovative value of all 
articles published by country i   

Average contribution to 
publication of international 
collaborators 

𝑝!!
!"#  Extent to which international 

collaboration contributed on average 
to an article published by country i 

Average number of 
publications per domestic 
organisation 

𝐴!"#!   Ratio between total number of articles 
published by country i and total 
number of unique organisations in 
country i 

Efficiency ei Extent to which country i’s 
connections to other countries are non-
redundant  

Geographical entropy 𝜀!  Geographical dispersion of country i’s 
collaborations (i.e., diversity of the 
geographical locations of country i’s 
collaborators) 

 
Table	  2	  Summary of variable names, symbols, and interpretation.  

 

5.2.8	  Simulation	  modelling	  
To understand the potential impact of Brexit on the UK’s research impact and surgical 

innovation and to evaluate how any adverse outcomes could be mitigated through 

suitable strategic collaborations beyond the EU, a number of simulations were carried 

out based on the real world network. These simulations involved the severance of all 

UK-EU27 collaborations and their subsequent replacement with collaborations with 

different geographical clusters, with a view to investigating how the UK’s 

performance would change.  

 

Two simulation studies were conducted, one to assess the effect of such substitutions 

on research impact and the other the effect on innovation (see S.7 in Appendix 3 for 

details). To ensure all replacements of collaborations were fair and on the 
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conservative side, all UK-EU collaborations were ranked by their corresponding 

output (i.e., research impact or innovation) and, starting from the worst (lowest 

performing) one, each collaboration was progressively substituted with a UK-non-EU 

collaboration. Specifically, for each output, three simulations were conducted in 

which each UK-EU collaboration was substituted with the UK-non-EU collaboration 

associated with one of the following three outcome measures: (i) the 25th percentile; 

(ii) the median; and (iii) the maximum value of the distribution of normalised 

citations or innovation index of all articles resulting from all UK-non-EU 

collaborations. To simulate the effects of newly established UK-non-EU 

collaborations on performance, three geographical clusters outside the EU were 

identified: (i) the US (the international leader in surgical innovation); (ii) Asia 

(including emerging research and innovation powerhouses such as China, South 

Korea, and India); and (iii) the ‘Rest-of-the-World’ (RoW).  

 

5.3	  Results	  
 

5.3.1	  Global	  collaboration	  network	  
Fig. 11 (Chapter 4) shows two ego-centred networks comprising links between the 

focal node (“ego”) and its neighbours (“alters”), and links between neighbours. The 

figure shows that two nodes with the same degree (i.e., number of collaborators) can 

be characterised by different structures of their ego-centred networks. A node 

collaborating with others that also collaborate with each other has redundant links 

generating closed triangles and a closed network structure. A node collaborating with 

disconnected others is characterised by an open network structure, rich in structural 

holes and brokerage opportunities.88,108  
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Fig. 15 (left-hand panel) shows the global collaboration network in robotic surgery 

consisting of 2,397 links connecting 772 organisations across 56 countries, where the 

thickness of lines is proportional to the intensity of collaboration, and the colour and 

size of nodes are proportional, respectively, to the research impact and innovation 

index of the corresponding country. The network in the right-hand top panel only 

highlights UK-EU collaborations. The right-hand bottom panel shows the association 

between countries’ research impact and innovation on the one hand, and number (i.e., 

degree) and geographical dispersion (i.e., entropy) of collaborations on the other.  

 

 

Figure	   15	  The international collaboration network in robotic surgery. The left-hand panel shows the 
global collaboration network consisting of 2,397 links connecting 772 organisations across 56 
countries. The network is weighted, and the thickness of the links corresponds to the intensity of the 
collaboration between the connected countries. The size of each node is proportional to the 
corresponding country’s innovation index, whereas the colour to the average normalised citations 
received by the country in the field of robotic surgery. The top right-hand panel shows a zoomed 
snapshot of the collaboration network between the UK and all EU countries. The bottom right-hand 
panel shows the association among countries’ network degree, geographical dispersion of 
collaborators, research impact and innovation index. 
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5.3.2	  Global	  leaders	  in	  surgical	  innovation	  and	  their	  collaboration	  profiles	  
 
Among all articles in robotic surgery, those involving international collaboration 

achieved the highest performance in terms of both citations and innovation. By 

contrast, articles involving no collaboration had the lowest performance. Interestingly, 

articles that originated solely from domestic collaborations had only a marginal 

superior performance to those involving no collaboration at all, both scoring 

significantly less than those resulting from international collaborations (in terms of 

both citations and innovation). The findings are summarised in Fig. 16. 

 

 

Figure	  16	  Average normalised citations (left-hand panel) and innovation index (right-hand panel) as a 
function of type of collaboration. Numbers within bars refer to the corresponding number of articles in 
each category. Average values of both citations and innovation index are divided by the maximum 
value across the corresponding three sets. 
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The most innovative country in the field of robotic surgery is the US, followed by 

Italy and then the UK. Among the top ten for surgical innovation, there are another 

four countries from the EU (Netherlands, Spain, Germany, France) and three from 

Asia (South Korea, China, and India). In terms of research impact, the ranking is 

similar: the US still ranks first, with the UK also appearing in the top ten (sixth), 

along with Canada, Japan and South Korea (ranking second). Fig. 17 illustrates the 

rankings of countries by research impact and innovation. It also depicts the 

contribution of collaboration patterns (international; domestic; no collaboration) to 

each country’s research impact and innovation. Fig. 18 sheds light on the effects of 

international collaboration to success, by showing the contributions of specific 

geographical regions and countries to each individual country’s research impact and 

innovation. It becomes apparent that for robotic surgery the UK’s primary 

collaboration partner and largest contributor to both research impact and innovation is 

the EU followed by the US. 
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Figure	  17	  The top 30 countries ranked according to their research impact (top) and innovation index 
(bottom). Bars are colour-coded to indicate the type of collaboration that contributes to the overall 
output. The contribution to success of articles involving international collaboration is further split into 
the contribution attributable to the focal country (orange bar) and the contribution attributable to the 
foreign collaborators (red bar). Countries are ranked by (total) research impact (top panel) and 
innovation (bottom panel), starting with the top-ranked on the left. 
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Figure	   18	  Contribution of geographical regions (left-hand panels) and specific countries (right-hand 
panels) to countries’ research impact (top panels) and innovation index (bottom panels). Countries are 
ranked by (total) research impact (top panels) and innovation index (bottom panels), starting with the 
top-ranked on the left. The length of each bar corresponds to the contribution to each country’s 
success attributable solely to international collaborators (red bars in Figure 17).  

 

 

5.3.3	  Regression	  analysis	  
Table 3 shows results from the estimated regression models (see Tables S3-S6 for 

descriptive statistics, estimates of all remaining parameters, and specification tests). 

There is no statistically significant difference in performance between two countries 

that differ in contribution of international collaborations and average number of 

publications per organisation, after controlling for the other covariates. By contrast, 

both efficiency and geographical entropy are statistically significantly associated with 
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both measures of performance. After controlling for the other covariates, as efficiency 

increases by one standard deviation, a country’s normalised citations and innovation 

value increase by 211.320 and 18.819 units, respectively. Moreover, an increase by 

one standard deviation in geographical entropy is associated with an expected 

increase of 244.537 units in normalised citations and of 30.850 units in innovation 

value.  

 

 Model (1) 
Research impact 

 

Model (2) 
Innovation 

 
Contribution of international 
collaborators 

68.272 
(158.432) 

8.109 
(11.384) 

Number of articles per 
organisation 

33.668 
(48.883) 

-2.363 
(4.174) 

Efficiency 211.320 
(63.625) 

18.819 
(6.108) 

Geographical entropy 244.527 
(55.760) 

30.850 
(4.641) 

Constant 74.600 
(106.865) 

7.116 
(10.900) 

No. of observations 56 56 
Centred R2 (uncentred R2) 0.572 (0.614) 0.519 (0.587) 
Root MSE (𝝈𝒆) 184.4 17.63 
F(10, 45) 3.26 7.17 
 
Table	   3	   Instrumental-variables models of countries’ research impact and innovation. The models are 
efficient GMM instrumental-variables estimators with standard errors robust to heteroskedasticity. 
Robust standard errors of parameter estimates are within parentheses. Reported values of the square 
root of the mean squared error (MSE) refer to the estimated standard deviation 𝜎! of the idiosyncratic 
disturbance. Estimated parameters in boldface are statistically significant at the 1 percent level (p-
value<0.01).  

 

5.3.4	  Simulation	  results	  
A number of simulations were carried out to examine the potential effects of replacing 

EU collaborators with other international partners on the UK’s research impact and 

innovation in robotic surgery. The US appears the most favourable collaboration 

partner replacing the EU in the event of a “hard Brexit” (Fig. 19). If that were the 

case, the simulation study suggests that the UK’s innovation may actually improve, 
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especially if existing collaborations with EU countries were to be replaced with top-

performing collaborations with the US. However, the effect of such substitutions on 

the UK’s research impact would be less pronounced. In particular, the UK’s research 

impact would ultimately suffer if an increasing percentage of UK-EU collaborations 

were replaced by UK-US collaborations (panel a), unless the UK managed to 

substitute all UK-EU collaborations with high-performing collaborations with the US 

(panels b,c).  

 

 

Figure	  19	  Simulation of the variation in the UK’s research impact (top) and innovation index (bottom) 
as a result of substituting EU collaborators with non-EU collaborators. All articles resulting from a 
collaboration involving only the UK and one or more of the EU27 countries were ranked from worst to 
best performing by research impact (top panels) and innovation index (bottom panels). The 
performance of various percentages of these articles, starting from the worst performing one, was 
replaced by the 25th percentile (panels a,d), the median (panels b,e), and the maximum value (panels 
c,f) of the distributions of research impact (top panels) and innovation index (bottom panels) of the sets 
of articles resulting from collaborations involving only the UK and: (i) the US; or (ii) Asia; or (iii) the 
‘Rest-of-the-World’ countries excluding the EU27 members. The red reference line corresponds to the 
actual value of the UK’s performance, normalised to one to facilitate the visual interpretation of the 
simulation results. Dotted lines refer to best fitted linear trends relating research impact and 
innovation index to various percentages of substitution of articles. All trend lines have a p-value<0.05, 
with the only exception of RoW in panel (f) with p-value=0.277. 
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Fig. 19 also shows that leveraging collaborations with Asian countries would not be 

as advantageous as with the US, especially in the event the UK were unable to replace 

collaborations with EU countries with high-performing ones (panels a,d). The 

simulations also suggest that replacing UK-EU collaborations with collaborations 

involving RoW countries does not seem to represent an appropriate post-Brexit 

strategy as this would mostly result in a substantial drop in the UK’s performance 

(except in panels c,e).  

 

5.4	  Discussion	  
 

This study evaluated research impact and innovation in robotic surgery,131,132 and 

suggested that a country can benefit from brokering between many and 

geographically diverse collaborators. The results also illustrate the EU’s crucial role 

in the UK’s phenomenal success. Specifically, the EU was shown to represent the 

UK’s largest collaboration partner and, more importantly, its greatest contributor to 

both research impact and innovation. With the future UK-EU relationship (including 

their collaboration on science and innovation) currently under negotiation, this 

represents a much-needed and timely study.  

 

Despite wide disagreements across the country as to whether Brexit will be beneficial 

or harmful to the UK, the consensus within the scientific and healthcare communities 

is that Brexit risks undermining the UK’s status as a global leader in science and 

innovation.124,134 The three key mechanisms considered responsible are funding 

withdrawal from the EU, loss of EU researchers from UK universities, and disruption 
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of the UK’s research and innovation networks – as a result of excluding the UK from 

European research collaborative agreements and the imposition of restrictions on the 

free movement of people (including scientists).134 Based on our findings, but also on 

the wider scientific literature, it becomes apparent that for science and innovation, the 

UK has greatly benefited from its collaboration with the EU. This is why “it is the 

UK’s ambition to build on its uniquely close relationship with the EU, so that 

collaboration on science and innovation is not only maintained, but strengthened” as 

explicitly stated by the UK Government in its UK-EU future partnership paper.135  

 

There are a series of reasons why the UK should be prepared for weakening its 

current research links with EU countries as a result of Brexit. First, the EU may sever 

those research links to ensure a competitive advantage in other aspects of the 

negotiations, such as those relating to protecting its political unity and single market 

integrity.136 It is also expected that the EU would not be keen to give a deserting 

member and research powerhouse a deal similar to what it currently holds.137 But 

even if the UK managed to remain in the EU’s research network, as a non-member, it 

would undoubtedly lose its existing influence in a number of critical issues such as 

defining research priorities and directing how EU research funds should be spent.126 

Furthermore, as a ‘third country’, the UK would likely go “at the back of the queue” 

when it comes to accessing EU research facilities.134 It is for all these interconnected 

reasons that it has been argued that “the most effective way to support UK and 

European scientific research is for the UK to remain in the EU”.138  

  

Those supporting Brexit could argue that these are only unfounded speculations. 

However, factual evidence has increasingly emerged.124,126,134,137,139 Reports from 
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several leading UK universities have recently documented biases against UK 

researchers involved in EU programmes including incidents where UK scientists 

already successful in gaining EU grants were asked not to participate in these 

programmes following the Brexit vote.137 Other recent publications, including from 

the House of Commons Science and Technology Committee, have suggested that a 

number of UK researchers were coaxed to withdraw from their leading role in 

Horizon 2020 programmes,117 some research consortia including UK scientists were 

dismantled following the Brexit vote,117 and some researchers were refused to submit 

applications for EU grants that included collaborators from the UK.117 

 

The UK must therefore be prepared for the formation of new strategic partnerships 

beyond the EU, and not simply await the outcome of the negotiations that started 

following the UK’s departure from the EU on 31 January 2020 and are expected to 

last until the end of the year, according to the agreed framework for the future 

relationship between the EU and the UK (importantly the joint Political Declaration 

published on 19 October 2019 is not legally binding and is “subject to 

ratification”).140-142 From this perspective, the simulation studies provide insights into 

the likely effects of such new strategic partnerships on the UK’s scientific 

performance, and can thus prove valuable in directing the UK’s future international 

strategy. Our study suggests that, within the field of robotic surgery, the best future 

partner for the UK in the event of a ‘hard’ (or a ‘failed’, i.e., no-deal) Brexit128 would 

be the US, currently its second largest research partner. However, our findings also 

suggest that the UK could secure an increase in research impact only if collaborations 

with the EU could always be replaced with top-performing collaborations with the 

US, something that would be very difficult and costly to achieve in practice, at least in 
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the short term. On the other hand, the UK’s scientific performance may suffer if 

collaborations with the EU could only be replaced with collaborations with less 

successful countries or geographical regions (e.g., with non-Asian countries) or with 

less successful organisations in top-performing countries (e.g., in Asia).  

 

Thus, even if there were a ‘hard’ Brexit, the UK’s best strategy in the short term 

might be to try and maintain its academic links to the EU. This represents a more 

pragmatic approach and is based on the findings that the EU represents not only the 

UK’s largest collaboration partner but also its greatest contributor to both research 

impact and innovation (see Fig. 18a,c). In addition to maintaining existing 

collaborations with the US, another effective strategy, at least in the short term, would 

be to reinforce existing (and successful) partnerships with Asian countries.143,144 This, 

combined with the catalytic role of geographical entropy in boosting both citations 

and innovation, is likely to help the UK to sustain and reinforce its role as an “open, 

inclusive and outward-facing” global country. Moreover, in the longer term, the 

establishment of new and strategic relationships with successful research 

powerhouses such as the US, China and India will be crucial for maintaining the UK’s 

global leadership in science and innovation.135,145 

 

Before concluding, it is important to consider the limitations of this study. The 

analysis focused on a very specific field, and caution is required in generalising the 

results to other domains. Additional studies would be needed to uncover the role of 

collaborative networks in different scientific fields. Moreover, the potential loss of 

EU funding (the UK received from the EU €8.8 billion for research and innovation in 

the 2007-2013 period as part of the Horizon 2020 programme grants)146 and/or of 
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human capital (almost one in five academics in UK universities are from the EU)147 as 

a result of Brexit have not been accounted for. This makes the simulation models 

conservative, as those losses would only further deteriorate the UK’s performance. 

Finally, another methodological limitation is chiefly concerned with the use of 

citation-based metrics as indicators of scientific merit.148  

 

Despite these limitations, this study has a number of strengths. It is the first of its kind 

in surgical research,132 using network analysis and simulation modelling, to examine 

the impact of Brexit on a key area in which, according to the Government’s Industrial 

Strategy, the UK is set to be a global leader.131 This study also comes at a very critical 

time point, when the level of participation of the UK in future EU programmes on 

science and innovation remains under negotiation. By studying the UK’s real world 

international collaboration network, the findings of this study are likely to be of 

practical value to the UK Government, its negotiators, and policymakers when it 

comes to setting priorities, making decisions, and devising international strategies to 

be implemented from 1 January 2021 following the completion of the current 

transition period.  

   

5.5	  Conclusion	  	  
As the future UK-EU relationship is still to be determined, there is no doubt that the 

decisions to be taken over the coming months will be of historical importance and 

will affect the UK’s (and EU’s) future for many decades to come. This study on the 

impact Brexit might have on the UK’s scientific research confirms what has long been 

argued, namely that the UK-EU research partnership has been mutually beneficial and 

that its continuation represents the best possible outcome for both negotiating parties. 
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Importantly, this study also provides new insights into the value of opportunities for 

research collaboration beyond the EU that the UK should be seeking to establish. 

Finally, the described network- and simulation-based analysis can be seen as a proof 

of concept for conducting similar studies of other domains that are equally important 

for the UK’s prosperity, such as international trade and financial services, and thus for 

inspiring policy and directing strategy towards ensuring that the UK remains a global 

leader in the post-Brexit era.   

 

5.6	  Chapter	  summary	  
 

The objective of this study was to evaluate the role of the European Union (EU) as a 

research collaborator in the United Kingdom (UK)’s success as a global leader in 

healthcare research and innovation and quantify the impact that Brexit may have.  

 

Methods included network and regression analysis of research collaboration 

networks, followed by simulation models based on possible Brexit scenarios. The 

international real world collaboration network of all countries involved in robotic 

surgical research and innovation were studied. These included 772 organisations from 

industry and academia nested within 56 countries and connected through 2,397 

collaboration links. 

The main outcome measures employed were research impact measured through 

citations, innovation measured through the innovation index, and an array of attributes 

of social networks to measure brokerage and geographical entropy at national and 

international levels. 
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It was shown that, globally, the UK ranks third in robotic surgical innovation, and the 

EU constitutes its prime collaborator. Brokerage between collaborators and their 

geographical diversity are associated with a country’s research impact (c=211.320 and 

244.527, respectively; p-value<0·01) and innovation (c=18.819 and 30.850, 

respectively; p-value<0·01). Replacing EU collaborators with US ones is the only 

strategy that could benefit the UK, but on the condition that US collaborators are 

chosen among the top-performing ones, which is likely to be very difficult and costly, 

at least in the short term.  

 

This study suggests what has long been argued, namely that the UK-EU research 

partnership has been mutually beneficial and that its continuation represents the best 

possible outcome for both negotiating parties. However, the uncertainties raised by 

Brexit necessitate looking beyond the EU for potential research partners. In the short-

term, the UK’s best strategy might be to try and maintain its academic links with the 

EU. In the longer-term, strategic relationships with research powerhouses including 

the US, China and India are likely to be crucial for the UK to remain a global 

innovation leader. 

 

The next chapter, Chapter 6, examines innovation in healthcare from a different 

perspective. Using the example of Transcatheter aortic valve implantation (TAVI), a 

healthcare innovation associated with an unparalleled diffusion, it introduces the 

concept of ‘disruptive innovation’ as this applies to healthcare and examines the 

factors associated with this, with a particular attention to the evidence base and 

marketing strategies employed. 
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6.	  Evaluation	  of	  marketing	  effects	  
and	  disruptive	  innovation	  in	  
healthcare:	  Network	  analysis	  of	  TAVI	  
 

6.1	  Introduction	  
 

Aortic stenosis (AS) represents the commonest valvular heart disease. Its increasing 

incidence has been attributed to a progressively ageing population where AS remains 

a major cause of cardiovascular mortality.149 The gold-standard treatment for AS is 

aortic valve replacement (aVR). However, the procedure involves major surgery that 

includes a sternotomy (ministernotomy or minithoracotomy for the minimally-

invasive approach), aortic cross clamping, and cardiopulmonary bypass. This limits 

the role of aVR in high-risk patient groups such as the elderly, the group where 

symptomatic AS is most commonly encountered.150 

 

Transcatheter Aortic Valve Implantation (TAVI) represents a recent innovation, 

initially developed for the treatment of AS in patients where aVR is considered 

prohibitive.150 This is most commonly due to the high-risk profile of patients 

(primarily the elderly but also the frail, and those with significant co-morbidities) but 

can also be a result of anatomical features posing significant intra-operative 

challenges (such as a small aortic annulus or ‘porcelain’ aorta).151  

 

Following the first live human case report in 2002, the uptake of TAVI has been 

unprecedented.152 In less than a decade, TAVI evolved into a standard therapy for AS 
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creating its own new ‘market’ (those AS patients deemed inoperable or high-risk for 

aVR).153 Its exponential uptake combined with the fact that it addresses a previously 

unmet clinical need have led to TAVI being described as a ‘disruptive innovation’.154 

However, market disruption is highly uncommon in modern healthcare, especially 

when it comes to invasive procedures where typically innovations are incremental in 

nature.155 This is primarily the result of intense regulatory frameworks established to 

ensure patient safety at all stages of the innovation process.39  

 

Using the example of TAVI, this study introduces the concept of disruptive 

innovation and examines the factors driving diffusion of innovations in healthcare, 

with a particular attention to the evidence base and marketing strategies employed. 

 

6.2	  Materials	  and	  Methods	  
 

6.2.1	  Dataset	  
 

The Web of Science® (WOS®) database (Clarivate Analytics, Philadelphia, PA) was 

searched on 7th December 2017 using the keywords ‘aortic valve stenosis’ and ‘aortic 

valve regurgitation’. All pre-clinical and clinical original research studies were 

included to study the evolution of the innovation process at all stages from idea 

generation to multi-centre RCTs, international registry reports, and the formulation of 

guidelines. Publications not reporting original research studies (e.g. review articles, 

book chapters, editorials, letters, patents) were excluded through filters (limiting to 

‘article’ in Document Types).  
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Of the original research articles, exclusion criteria involved studies on paediatric 

patients (age < 18 years) and those where additional procedures to the aortic valve 

intervention were performed in the same setting (e.g. TAVI with concurrent coronary 

angioplasty). In constructing the citation network, articles that did not receive or make 

at least one citation from/to another article respectively within the dataset were also 

excluded. The flow diagram illustrating the search strategy is shown in Fig. 20. 

 

 

 

Figure	  20	  Flow	  diagram	  illustrating	  the	  search	  strategy	  used	  for	  generating	  the	  citation	  networks.	  	  
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6.2.2	  Data	  classification	  
Another researcher and I critically appraised and classified independently the data for 

each study: level of evidence, country of study origin (based on corresponding 

author’s affiliation), type of intervention (e.g. TAVI, aVR), manufacturer (e.g. 

Medtronic, Edwards Lifesciences), type of approach (e.g. transfemoral for TAVI or 

minimally-invasive for aVR), and for each intervention arm: number of patients, 

mean age (and standard deviation), number of patient deaths and follow-up time at 

which mortality was reported, and number of patients developing disabling 

cerebrovascular accident (CVA), major vascular complications, and moderate-severe 

paravalvular leak (for the last three outcomes 30-day rates were extracted). Any 

discrepancies were resolved by consensus.   

	  

6.2.3	  Citation	  network	  and	  diffusion	  cascades	  
	  

In the citation network, the nodes represent the articles addressing the topic of “aortic 

valve stenosis” or “aortic valve replacement”, and a directed link is established from 

each citing article to all other articles cited in its bibliography addressing the same 

topic.156 Through the citation network (n=2,126), the diffusion cascade along which 

information spreads and adoption of innovation propagates was mapped. The citation-

based chain of adoption permits the tracing back to the seed node representing the 

original article in which a given idea was introduced (e.g. first description of a new 

approach for TAVI) or initially trialed (e.g. the first human trial of a novel device, e.g. 

balloon-expandable TAVI). The structure of these cascades can therefore shed light 

on the diffusion process through which innovations, once proposed, built up 

momentum over time.35  
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6.2.4	  Outcome	  measures	  
- Structural Virality (𝑠𝑣!!): a measure of diffusion of innovation calculated by  

𝑠𝑣!! =
1
𝑙 𝑑

!,!
  

!∈!!

, 𝑖 ≠ 𝑗,
!∈!!

 

where for n>1 articles, for each seed article s, structural virality 𝑠𝑣!!of cascade 𝐶! is 

defined as the average length of the shortest directed paths between pairs of articles in 

Cs. 𝑑
!,!

 denotes the length of the directed shortest path from article i to article j, Cs is 

the set of nodes belonging to the cascade originating from article s, and l is the 

number of directed paths connecting pairs of articles in Cs. So constructed, 

𝑠𝑣!!becomes larger as the adopters of the original idea proposed by seed article s are 

farther apart from one another and from s, thus producing a multi-generational 

cascade. Structural virality represents a metric specifically developed for the 

measurement of diffusion of innovation in healthcare and validated against big data 

from the clinical setting (see Chapter 3).39  

 

- Innovation index (𝑖𝑖!): a measure of surgical innovation output calculated by  

 

𝑖𝑖! =

1
𝑐!∈! ×𝑝!

!"#

𝑃!

max
!∈!

1
𝑡!∈! ×

𝑝!
!"#

𝑃!

  ×100, 

 

where for a technological intervention t, ∈ [1,… , 𝑆] is an integer value labeling the 

ordinal category associated with the implementation stage according to the level of 

evidence, 𝑝!!  is the count of publications on this technological intervention appearing 

in stage s, and 𝑃! =    𝑝!!!   is the total number of publications appearing in stage 𝑠 

across all technologies at a global scale (𝐺). Similar to structural virality, the 
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innovation index represents a metric developed specifically for the measurement of 

innovation in healthcare, also validated against big data from the clinical setting (see 

Chapter 3).39 

 

- Mortality-per-person-year: a measure of the number of events (deaths) divided by 

the amount of person-time (year) observed calculated by  

 

mpy  =   !!"  

 

where for a study (article), the mortality-per-person-year mpy is the incidence rate or 

density (not a proportion) of event (death) E reported over person-time (year) (i.e. the 

product of persons N multiplied by time T).157 Mortality rate using person-time (year) 

was chosen because individual patient data were not available and follow-up duration 

was variable between clinical studies. Mortality-per-person-year has been widely used 

in the epidemiological and meta-analytic literature when the patient follow-up 

duration varies (as was the case in this study).158 Moreover, mortality (in general) 

constitutes the most commonly utilised ‘hard’ outcome metric for benchmarking and 

assessing cardiac interventions.159,160  

 

- Altmetric score: a metric of ‘visibility’ used to track the attention that research 

output and datasets receive online. It pools data from a variety of online platforms that 

include social media (e.g. Twitter, Facebook and Google+), traditional media – both 

mainstream (e.g. The Times, BBC) and field-specific (e.g. New Scientist), blogs – 

both of major organisations (e.g. Cancer Research UK) but also of individual 

researchers, and online reference managers (e.g. Mendeley).161 The altmetric score 
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cleans up and normalises the sources to quantify the “digital attention” an article 

receives, thus providing an alternative measure of online visibility.162 

	  

	  6.2.5	  Statistical	  analysis	  	  
Mortality-per-person year was compared for different interventions (i.e. TAVI vs. 

aVR). An age-stratified analysis of distributions’ differences by intervention was also 

performed for distinct age groups (categorised in three groups: <60, 61-80, >80 years) 

in view of the inherently different age of patients in the two groups. In view of the 

distributions not being normal as indicated by histograms (see Appendix 4), non-

parametric statistical tests (Kruskal-Wallis and Wilcoxon signed-rank tests) were 

employed for comparisons. Moreover, a linear regression model has been fitted to the 

data to best represent the time trend of mortality-per-person-year by intervention. 

 

To assess the nature of the relationship between mortality-per-person-year and 

structural virality on the one hand and altmetric score on the other, best-fitting models 

were used. Specifically, in the assessment of the relationship between mortality-per-

person-year and structural virality, a polynomial model of degree 2 was employed, 

and for assessing the relationship between mortality per person-year and altmetric 

score a logarithmic model was employed (see Appendix 4 for details of model 

selection). 

 

6.3	  Results	  	  
 

The search revealed 2,884 articles published between 1965 (when the first animal 

study on percutaneous valve implantation for aortic valve disease was published)163 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   103	  

and December 2017. Of these, 289 articles were excluded as they evaluated aortic 

interventions in paediatric patients (n=73) or involved an additional procedure at the 

same time as the aortic intervention (n=216). Of the remaining articles evaluating 

different interventions for aortic stenosis and/or regurgitation (n=2,595), 469 articles 

were excluded as they did not receive a citation from or make a citation to another 

article within the dataset. The resulting 2,126 articles with at least one ingoing or 

outgoing in-field citation were used to construct the network (Fig. S1, Appendix 4). 

Of these, 1,879 articles made at least one in-field citation (“adopters” of innovation) 

and 1,306 articles received at least one in-field citation (“sources” of innovation).  

 

6.3.1	  Diffusion	  of	  innovations	  and	  innovation	  index	  
 

The number of TAVI cases performed worldwide (TAVI uptake) was found to follow 

an exponential growth curve starting from 2009 (Fig. 21). The innovation index for 

TAVI was significantly higher to that of aVR (see Appendix 4).  
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Figure	   21Number of patients per year reported to undergo TAVI on a global scale based on peer-
reviewed publications. 

 

6.3.2	  Mortality	  
 

The median mortality-per-person-year was significantly higher for TAVI compared to 

aVR (25.1 vs. 4.6, p<0.05). The mortality difference favouring aVR over TAVI 

remained statistically significant even when patients were stratified by age (p<0.05 

for all age groups, Table S3 in Appendix 4). Mortality for TAVI decreased in a linear 

fashion until 2011 when it reached a plateau, albeit at a higher level to that for aVR, 

which remained stable throughout the same period (Fig. 22).  

 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   105	  

  

Figure	  22	  Mortality rates of TAVI vs. aVR (top left) and sub-group analysis by age (right).   

 

6.3.3	  Virality	  and	  its	  relationship	  to	  mortality	  
	  

The virality of TAVI was significantly higher to that of aVR (p<0.05). When plotting 

virality against mortality, a U-shaped curve results for TAVI indicating that as its 

uptake became increasingly viral, following an initial drop and short plateau, 

mortality started to increase. On the other hand, virality did not demonstrate any 

relation with mortality for aVR, which remained constant and low throughout the 

study period. All findings were statistically significant (p<0.05) and are graphically 

presented in Fig. 23 (the statistical tests used and exact p-values can be found in 

Appendix 4).    
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Figure	  23	  The relationship between virality and mortality for TAVI (orange) and aVR (blue). 	  

 

6.3.4	  Altmetric	  score	  and	  its	  relationship	  to	  mortality	  
 

The median altmetric score was significantly higher for TAVI than for aVR (p<0.05) 

indicating a significantly higher ‘visibility’ for TAVI. When plotting altmetric scores 

against mortality, a linear decreasing trend was observed for TAVI (i.e. the lower the 

mortality for TAVI reported by a paper, the more ‘visible’ that paper was in 

mainstream and online media) whilst for aVR there did not appear to be any 

relationship between the two (both findings were statistically significant, p<0.05). 

The above findings are presented in Fig. 24 (the statistical tests used and exact p-

values can be found in Appendix 4). 
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Figure	   24	   Altmetric scores for TAVI (blue) and aVR (orange, top left), the relationship between 
altmetric score and mortality (bottom left) and the relationship between virality and altmetric score (no 
relationship found).  

	  

6.4	  Discussion	  	  
 

This study reports a number of important findings that illustrate the power of 

marketing in enhancing the diffusion of innovations in healthcare and ensuring 

translation to market success. Using the example of TAVI, a topical and highly 

successful innovation in terms of clinical uptake and sales, it also demonstrates that 

marketing can drive diffusion independent of the evidence.  

 

TAVI was specifically chosen as the index innovation precisely because of the 

conflicting (and vast) literature regarding whether or not it truly represents a 

disruptive innovation. Though TAVI has undoubtedly attracted a great interest in the 
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cardiovascular field generating numerous multi-centered RCTs, there remains a lack 

of consensus around its indications and comparative effectiveness. This is in complete 

contrast to its unparalleled clinical uptake and is what makes TAVI a unique case 

study meriting an in-depth analysis to understand how “practice has gone beyond the 

evidence”.164  

 

Proponents of TAVI attribute its unprecedented clinical uptake to it being a 

“breakthrough technology” and a “disruptive innovation”.154,165 However, this view is 

not widely shared since TAVI has been associated with both higher complication 

rates and a lack of cost-effectiveness over aVR, the incumbent market leader.164  

 

To understand whether TAVI truly represents a disruptive innovation, it is imperative 

to first consider the definition of the term. Contrary to most innovations that are 

incremental in nature, disruptive innovations represent “simpler, more convenient, 

and less costly alternatives initially designed to appeal to a small or insignificant 

market” (Table 4).166 At first, disruptive products/technologies may appear 

unattractive but they eventually displace established competitors in a bottom up 

manner. Market disruption ensues through the provision of a low-cost alternative of 

acceptable performance becoming the new market leader.167,168  
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Table	  4	  The characteristics of disruptive innovation as defined by Christensen.167,168  

 

Looking at how TAVI may fit into this definition, TAVI constitutes a simpler and 

more convenient alternative to conventional aVR in view of its percutaneous nature. 

However, it is neither less costly nor was it designed to appeal to a small or 

insignificant market. On the contrary, TAVI has consistently been shown to be less 

cost-effective than aVR, even for high-risk patients.169 This group, which along with 

‘inoperable’ patients constitute the main target groups for TAVI, represent over a 

third of all patients with symptomatic aortic stenosis170 making the TAVI market 

highly significant.165 Finally, the similar (but not superior) survival rates between 

TAVI and aVR, coupled with the higher rates of disabling stroke, major vascular 

complications, and moderate or severe aortic regurgitation (for TAVI) as indicated by 

large, multi-centre RCTs,171,172 make it difficult to describe its performance as 

‘acceptable’ in the presence of an established, safer, and cheaper alternative (aVR).  

 

It thus becomes apparent that TAVI does not constitute a disruptive innovation. What 

it represents is an incremental innovation to pre-existing percutaneous cardiac 

interventions (e.g. angioplasty, stenting), which themselves were disruptive as they 

significantly altered the degree of invasiveness for coronary artery revascularisation 

whilst offering the same degree of protection against death, CVA and myocardial 

The characteristics of disruptive innovation  

Simpler, cheaper, and lower performing 

Promise lower margins, not higher profits 

Often initially shunned by leading customers who can’t use or don’t want them 

First commercialised in small or insignificant markets 
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infarction to coronary artery bypass grafting (CABG) at a lower cost (‘simpler and 

cheaper’ than CABG).173 These facts, widely supported by level I evidence, justify 

describing the performance of percutaneous angioplasty and stenting as ‘acceptable’ 

despite the greater need for repeat revascularisation compared to CABG (‘lower 

performing’ than CABG).173  

 

Despite not constituting a disruptive innovation, TAVI has exhibited a unique 

diffusion rate in a field (healthcare) where innovations are known to diffuse very 

slowly. This is due to regulatory, financial, and ethical barriers established to 

safeguard patient safety and control costs at the various stages of the innovation 

process.43,52,174 As shown in Fig. 21, the clinical uptake of TAVI has been exponential 

and continues unopposed to date. This is despite serious concerns having been raised 

over the years, especially in relation to its complication profile and costs.164,175 

Therefore, clinical factors cannot (solely) account for the clinical uptake of TAVI.  

 

In the present era of evidence-based medicine, evidence (with RCTs at the top of the 

hierarchy) is used to guide clinical practice and, in conjunction with cost 

considerations, inform policy.43 This does not appear to be the case with TAVI. As 

shown in this and other studies,176,177 its exponential uptake started in 2009, preceding 

the publication of the first multi-centre RCTs supporting its use (PARTNER trial 

cohorts A and B).170,172 Even as early as 2004, TAVI already occupied a prominent 

market share that reached up to 20% of all aortic valve procedures in Western 

Europe.165  
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In addition to the time lag (of years) between evidence and clinical implementation 

(diffusion), the ‘landmark’ RCTs (PARTNER cohorts A and B) commonly cited to 

justify the wider implementation of TAVI have come under heavy criticism. Reasons 

include publication bias, lack of transparency, unbalanced patient characteristics 

(favouring TAVI), and failure to completely declare conflicts of interest by the 

principal investigators.164 It is also imperative to note that these RCTs were all 

designed to assess non-inferiority as opposed to superiority.172  

 

Most importantly, the survival advantage reported in favour of TAVI in the 

‘landmark’ RCTs only related to the subgroup of patients deemed inoperable (n=358), 

i.e. where TAVI was compared to conservative treatment (medical management 

and/or balloon aortic valvuloplasty).170,172 In the original cohort (n=699) where TAVI 

was compared ‘head-to-head’ against aVR, the survival rates were found to be similar 

both at 1- and 5-years, not superior.171,172 At the same time, complication rates 

relating to disabling CVA and major vascular complications were consistently higher 

in the TAVI group compared to both conservative treatment and aVR.170,172 

 

The phenomenon of choosing suboptimal comparators (known as ‘straw man 

comparators’) when evaluating a new technology/treatment, is widely prevalent in 

industry-sponsored RCTs,178 which represent virtually all high-quality RCTs 

evaluating TAVI.164 Naturally, such comparisons increase the likelihood of obtaining 

favourable results (for the new product/intervention) and are thus preferred by 

sponsors over ‘head-to-head’ comparisons against established treatments (the ‘gold 

standard’).178 TAVI is no exception to this (a survival benefit was only demonstrated 

against conservative management and not aVR).170,172  
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At present, the major concern with TAVI is that “indications are slipping”.179 Large 

registry data from both sides of the Atlantic reveal that TAVI is now widely 

performed in intermediate-risk and younger patients in the absence of reliable data 

regarding long-term valve durability (when it is known from surgical valves’ research 

that a minimum follow-up of 10 years would be required).180 This off-label 

performance of TAVI in lower-risk patients has formed a significant proportion of 

clinical practice for years; long before the SURTAVI trial (that compared TAVI with 

aVR in intermediate-risk patients) was published.176,181 Similar to PARTNER, 

SURTAVI was also designed as non-inferiority and sponsored by a leading TAVI 

manufacturer (Medtronic, Inc.), albeit different to that of PARNER (Edwards 

Lifesciences Corp.)181      

 

The apparent implementation-evidence mismatch advocates the involvement of non-

clinical factors (i.e. marketing) in the diffusion of TAVI.164,180 The negative and 

statistically significant association identified between the mortality reported for TAVI 

per study and its altmetric score further reinforces this hypothesis, especially as no 

similar relationship was found to exist for aVR. As altmetric score represents an 

increasingly recognised tool for measuring the real-time reach and influence of 

articles,162 this negative association denotes a bias towards selectively promoting 

those studies favouring TAVI across both mainstream and online media. This is also 

indicative of a shift in the manufacturers’ marketing strategy where in addition to 

targeting physicians and other healthcare providers involved in the purchasing of their 

products (business-to-business model), they also target directly patients and the public 

(business-to-consumer model).182,183   
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The healthcare sector with the strongest marketing component remains the 

pharmaceutical industry where one of the most powerful predictors of new drug 

uptake has been shown to be a high exposure to marketing.184 This study’s findings 

indicate that marketing is now playing an increasingly important role in the medical 

devices sector too, in this case in promoting the diffusion of TAVI. The new 

marketing strategies aimed at the patients and public directly are likely to be crucial in 

generating the increasing demand seen, with a recent study showing that patient 

perception is a key factor when it comes to opting for TAVI over other treatments.185  

 

Diffusion represents the final phase of the innovation value chain and, from the 

manufacturers’ perspective, constitutes a key metric of success (both sales and profits 

are directly linked to diffusion).35,39 However, in healthcare, for innovation to 

generate value, its diffusion must also be shown to improve patient outcomes and/or 

reduce costs.32 As TAVI lacks cost-effectiveness over aVR,169 the relationship 

between diffusion and mortality was evaluated, to see whether the diffusion of TAVI 

has been associated with a reduction in mortality rates.      

 

As illustrated in Fig. 23, initially, the diffusion of TAVI was found to be associated 

with a reduction in mortality. This likely reflects the fact that the introduction of 

TAVI addressed a previously unmet clinical need (for inoperable patients with aortic 

valve disease).154 However, following this initial period, as the diffusion of TAVI 

continued unopposed, mortality started to increase. This second phase corresponds to 

the ‘market disruption’ period where TAVI (transfemoral and transapical) started 

taking over (‘disrupting’) the market of aVR through its increasing popularity 
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resulting in lower-risk and younger patients (suitable for aVR) to opt for TAVI 

despite no demonstrable survival benefit or cost-effectiveness over aVR.179  

 

Another technology that resembles TAVI in terms of the imbalance between its 

diffusion and evidence base is robotic surgery, also commonly (and erroneously) 

labeled as a ‘disruptive innovation’ when it actually constitutes an incremental 

innovation based on laparoscopic surgery,27 a truly disruptive innovation, which 

forever changed the surgical landscape.155 Not only is robotic surgery significantly 

more expensive than laparoscopic surgery but more importantly, robotic-assistance 

has failed to translate to superior patient outcomes over the laparoscopic approach 

(with the possible exception of robotic prostatectomy).6,27 Yet, robotic surgery is 

experiencing a marked diffusion across multiple surgical specialties raising again the 

issue about marketing (rather than evidence) driving its diffusion.6 

 

The final finding that merits mentioning relates to the mortality of TAVI, which 

contrary to published randomised data reporting it to be similar to that of aVR (non-

inferior),171,186 was shown to be significantly higher in this study even after 

controlling for age. This discrepancy is likely to be the result of pooling all published 

data (trials and registry data), as opposed to confining the analysis to RCTs only. By 

looking at the entire evidence spectrum, the findings presented here are likely to be 

more representative of the ‘real world’.187 

 

Before concluding, it is important to consider the strengths and limitations of this 

study. The two key strengths relate to the type of data pooled and the analysis 

employed. Data originating from a variety of heterogeneous sources were extracted 
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and linked. These extended beyond the clinical setting to alternative metrics in view 

of the existing imbalance between evidence and implementation. Moreover, this is the 

first study to employ network analysis to provide an in-depth quantitative assessment 

of the diffusion of TAVI beyond simply evaluating trends in terms of numbers of 

cases performed per annum globally (which was also done). Network-based diffusion 

metrics (structural virality) and visibility metrics (altmetric score) were incorporated 

in the analysis and their relationship to clinical outcomes evaluated, something not 

previously performed in this context.  

 

Limitations include the fact that market diffusion metrics such as sales and profits 

were not taken into consideration, and similarly clinical outcomes beyond mortality 

were not considered. However, in view of the novelty of the study in terms of the data 

breadth, their linkage, and subsequent network analysis, it was felt that incorporating 

more metrics would substantially complicate the study without adding a further 

dimension to those already studied (diffusion, visibility, and patient outcomes). 

Another limitation relates to the fact that the pooling of data was at the study (or 

registry) level (as reported in each publication), and although we acknowledge that 

individual patient data would have significantly strengthened the findings, the shear 

volume of the data used (exceeding 2,000 publications reporting on more than 

160,000 patients) make the findings robust.  

 

Finally, there are limitations associated with the choice of TAVI as the index 

innovation. These relate to the fact that TAVI was considered as a single intervention 

when actually a variety of valves exist with potentially distinct characteristics, 

depending on multiple factors including their manufacturer and generation. In 
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addition, different routes can be used for valve implantation, each with its distinct 

indications and risk profile. Though this is true, the aim of this study was to evaluate 

the diffusion of TAVI as a healthcare innovation overall rather than perform specific 

comparisons between different devices and manufacturers. These limitations, which 

relate to product heterogeneity, are by no means unique to TAVI but apply to the 

evaluation of most novel healthcare interventions, especially when it comes to 

innovative medical devices.188,189 Importantly, despite the large number of existing 

manufacturers and different implantation routes available, TAVI represents a 

relatively ‘homogeneous’ intervention, with only a handful of manufacturers 

dominating the market and the transfemoral route constituting the commonest route 

employed by far.190,191  

 

6.5	  Conclusion	  
This study has shown that the unparalleled diffusion of TAVI appears to be the result 

of highly successful marketing strategies rather than the evidence base. Based on the 

findings, it would be advisable to halt the continuing expansion of TAVI indications 

to lower-risk and younger patients until longer follow-up results of current trials and 

international registries become available. In addition, the widespread use of TAVI in 

high-risk operable patients should be scrutinised more thoroughly since the evidence 

to date has failed to demonstrate clinical superiority or cost-effectiveness over aVR.  
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6.6	  Chapter	  summary	  
 

The objective of this study was to examine the factors associated with the 

unparalleled diffusion of TAVI, with a particular attention to the evidence base and 

marketing strategies employed. 

 

Network and regression analyses were used. All pre-clinical and clinical original 

research studies (n=2,595) reporting on the evolution of the innovation process in the 

treatment of ‘aortic valve stenosis’ and ‘aortic valve regurgitation’ in the Web of 

Science® database were included. These encompassed 160,892 patients undergoing 

treatment for aortic valve disease in the period between 2002 (when the first live 

human TAVI case was performed) and December 2017 (time of data extraction).  

 

TAVI constituted the primary focus as the index ‘disruptive’ innovation. Aortic valve 

replacement (aVR), the current gold standard, was used as the control intervention. 

The main outcome measures included the number of cases performed per annum 

globally, structural virality (a validated metric of diffusion of innovation in 

healthcare), innovation index, mortality-per-person-year, and altmetric score (a metric 

of research ‘visibility’ in mainstream and online media).  

 

It was shown that the number of TAVI cases performed worldwide is following an 

exponential growth curve that started in 2009 preceding the publication of the first 

multi-centre RCTs supporting its use. The median mortality-per-person-year is 

significantly higher for TAVI compared to aVR (25.1 vs. 4.6, p<0.05) even when 

patients are stratified by age. Both the virality and media visibility of TAVI are 
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significantly higher to aVR (p<0.05). The relationship between virality and mortality 

for TAVI follows a U-shaped curve (no relationship is evident for aVR). A linear 

decreasing trend is observed between mortality and visibility for TAVI (no 

relationship is evident for aVR).   

 

In summary, the unparalleled diffusion of TAVI and continuous expansion of its 

indications to progressively lower-risk and younger patients appear to be the result of 

highly successful marketing strategies targeted directly at patients and the public 

rather than the evidence base.  

 

The next chapter, Chapter 7, represents the final study comprising this thesis. It 

examines innovation from a regulatory perspective. This is crucial as the balance that 

regulation aims to achieve between ensuring patient safety and promoting innovation 

can be especially fine. Using TAVI as an example of high-risk innovation in 

healthcare, different regulatory frameworks across the world are evaluated and 

solutions proposed towards the development of a regulatory ecosystem promoting 

medical device innovation without compromising on the safety of patients and the 

public. To ensure the full patient safety profile was evaluated, a number of 

complications beyond mortality were also assessed. These included 30-day rates for 

disabling CVA, major vascular complications, and the development of post-TAVI 

paravalvular leak.  
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7.	  The	  innovation-‐regulation	  
conundrum:	  A	  network	  perspective	  	  
 

7.1	  Introduction	  
The principal motivation behind the regulation of healthcare innovation relates to 

ensuring the safety of patients and the public. In their attempt to do so, the various 

regulatory frameworks and accompanying legislation across the world share two 

common objectives: i) safeguarding public health and ii) ensuring innovative 

technologies reach patients promptly.192 However, this can prove exceptionally 

challenging in practice as the two can often be in direct contradiction, especially when 

it comes to expediting market access for very promising but high-risk innovations, 

such as implantable medical devices. 

 

The fast pace and large numbers of innovations arising and evolving on a continuous 

basis across the wide breadth of the various healthcare sectors can (and commonly 

does) outpace the ability of regulatory bodies to establish their safety and 

effectiveness in a timely manner (i.e. prior to market entry). This poses a significant 

problem in need of urgent attention, as the risk is that innovations may become 

outdated before they even reach patients. Not only can this diminish the potential 

value that innovations could offer to patients (and the wider healthcare systems) but it 

can also act as a strong deterrent to existing and aspiring innovators. The latter is a 

particularly serious concern as in the long-term it can adversely impact on the 

economy and society as a whole. 193 

 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   120	  

Innovation not only provides the foundation for progress in healthcare,13 it also 

constitutes the core ingredient for prosperity and growth at all societal levels (ranging 

from that of the individual all the way to national level), both core determinants of 

global health.194 It is thus imperative that innovation is enhanced to the maximum. 

Investing more (not only financially, but also in terms of time and human capital) is 

crucial, but so is recognising and systematically addressing existing barriers. One of 

the key barriers to innovation relates to certain aspect of regulation.195 This is 

especially true in healthcare where regulatory requirements may on occasion impede 

the timely access of patients to novel diagnostics and treatments.196  

 

Using the timely example of TAVI, the most dominant innovation in the field 

cardiovascular medicine and surgery on a global scale, the final study of this thesis 

aims to evaluate the effect of regulation on both innovation and patient safety. 

Innovation metrics and clinical outcomes for geographical regions with distinct 

regulatory frameworks were measured and compared in an attempt to elicit the 

barriers and catalysts to innovation and understand how these can impact on patient 

safety. This information is likely be of distinct value to all stakeholders - including 

governments, regulatory bodies, policy makers, clinicians, and patients - in helping to 

inform future policymaking and point to areas where legislative changes are most 

likely to optimise the (fine) balance between driving innovation and ensuring the 

safety of patients and the public.   
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7.2	  Materials	  and	  Methods	  
 

7.2.1	  Dataset	  
The Web of Science® (WOS®) database (Clarivate Analytics, Philadelphia, PA) was 

used. The search was performed on 2nd June 2017 and all publications in the Topics 

“aortic valve stenosis” and “aortic valve regurgitation” were retrieved. The search 

was then refined to a subset of categories including “cardiac cardiovascular systems” 

and “surgery” (see Appendix 5 for details) and focused on peer-reviewed articles 

only. 

 

Both pre-clinical and clinical original research studies were included to study the 

evolution of the innovation process at all stages from idea generation all the way to 

multi-centre RCTs, international registry reports, and the formulation of guidelines. 

Publications not reporting original research studies (e.g. review articles, book 

chapters, editorials, letters, patents) were excluded through filters (limiting to ‘article’ 

in Document Types). Exclusion criteria also involved studies on paediatric patients 

(<18 years) and studies where additional procedures to the aortic valve treatment were 

performed in the same setting (e.g. TAVI with concurrent coronary angioplasty).       

 

7.2.2	  Data	  classification	  
Another researcher and I critically appraised and classified independently the data for 

each study: level of evidence, country of study origin (see below), type of intervention 

(e.g. TAVI, aVR), and for each intervention arm: number of patients, mean age (and 

standard deviation), number of patient deaths and follow-up time at which mortality 

was reported, and number of patients developing a disabling cerebrovascular accident 

(CVA), major vascular complications, and moderate-severe paravalvular leak based 
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on echocardiography (for the last three outcomes 30-day rates were extracted). Any 

discrepancies were resolved by consensus.   

 

In terms of the geographical classification, this was based on the geographical origin 

of the corresponding author’s affiliated institution. For each article, a unique 

geographical region was attributed among the following six: Africa, Asia, Central and 

South America, Europe, Middle East, North America, and Oceania (see Appendix 5).  

 

7.2.3	  Citation	  network	  and	  diffusion	  cascades	  
In the citation network, the nodes represent the articles, and a directed link is 

established from each citing article to all other articles cited in its bibliography 

addressing the same topic.156 Through the citation network, it is possible to map the 

diffusion cascade along which information spreads and adoption of innovation 

propagates. Moreover, the citation-based chain of adoption permits the tracing back to 

the seed node representing the original article in which a given idea was introduced 

(e.g. first description of a new approach for TAVI) or initially trialed (e.g. the first 

human trial of a novel device, e.g. balloon-expandable TAVI). The structure of these 

cascades can therefore shed light on the diffusion process through which innovations, 

once proposed, built momentum over time (both in terms of diffusion but also 

implementation based on the sequential innovation stages reached – see innovation 

metrics section below).35,39 Only articles that made or received at least one citation 

to/from another article in the dataset were used to construct the network (since 

citations are represented by the links between nodes).  
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7.2.4	  Clinical	  outcome	  measures	  
Four clinical outcome measures were used: 

-Mortality-per-person-year: a measure of the number of events (deaths) 

divided by the amount of person-time (year) observed calculated by  

 

mpy  =   !!"  

 

where for a study (article), the mortality-per-person-year mpy is the incidence 

rate or density (not a proportion) of event (death) E reported over person-time 

(year) (i.e. the product of persons N multiplied by time T).157 Mortality rate 

using person-time (year) was chosen because individual patient data were not 

available and follow-up duration varied between studies. Mortality-per-

person-year has been widely used in the epidemiological and meta-analytic 

literature when follow-up duration varies among studies.158 Moreover, 

mortality (in general) constitutes the most commonly utilised ‘hard’ outcome 

for benchmarking and assessing cardiothoracic interventions.159,160  

 

- Disabling stroke: percentage of patients developing a disabling CVA at 30 

days  

 

- Major vascular complications: percentage of patients developing major 

vascular complications at 30 days  

 

- Moderate or severe paravalvular leak: percentage of patients developing 

moderate or severe paravalvular leak (as evidenced on echocardiographic 

evaluation) at 30 days 
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7.2.5	  Other	  performance	  measures	  
Additional performance measures were employed to capture innovation, academic 

performance, and media visibility for each research article. These were: 

 

- Innovation metrics 

- Innovation index (𝑖𝑖!): a measure of surgical innovation output calculated by  

 

𝑖𝑖! =

1
𝑐!∈! ×𝑝!

!"#

𝑃!

max
!∈!

1
𝑡!∈! ×

𝑝!
!"#

𝑃!

  ×100, 

 

where for a technological intervention t, ∈ [1,… , 𝑆]  is an integer value 

labeling the ordinal category associated with the implementation stage 

according to level of evidence, 𝑝!!   is the count of publications on this 

technological intervention appearing in stage s, and 𝑃! =    𝑝!!!   is the total 

number of publications appearing in stage 𝑠 across all technologies on a global 

scale (𝐺). The innovation index represents a metric specifically developed for 

the measurement of innovation in healthcare and has been validated against 

big data from the clinical setting (see Chapter 3).39	  

 

- Structural Virality ( 𝑠𝑣!! ): a network-based measure of diffusion of 

innovation calculated by  

𝑠𝑣!! =
1
𝑙 𝑑

!,!
  

!∈!!

, 𝑖 ≠ 𝑗,
!∈!!

 

where for n>1 articles, for each seed article s, structural virality 𝑠𝑣!!of 
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cascade 𝐶!  is defined as the average length of the shortest directed paths 

between pairs of articles in Cs. 𝑑
!,!

 denotes the length of the directed shortest 

path from article i to article j, Cs is the set of nodes belonging to the cascade 

originating from article s, and l is the number of directed paths connecting 

pairs of articles in Cs. So constructed, 𝑠𝑣!!becomes larger as the adopters of 

the original idea proposed by seed article s are farther apart from one another 

and from s, thus producing a multi-generational cascade. Similar to the 

innovation index, structural virality represents a metric specifically developed 

for the measurement of diffusion of innovation in healthcare also validated 

against big data from the clinical setting (see Chapter 3).39  

 

- Academic success 

- Citation numbers: the traditional measure of academic success measured 

over the citation network.197 This corresponds to the in-degree of an 

article, i.e. the number of incoming links (citations) from the other articles 

in the network. See Appendix 5 for a more formal description of this 

measure. 

 

- Media visibility 

- Altmetric score: a metric of ‘visibility’ used to track the attention that 

research output and datasets receive online. It pools data from a variety of 

online platforms that include social media (e.g. Twitter, Facebook and 

Google+), traditional media – both mainstream (e.g. The Times, BBC) and 

field-specific (e.g. New Scientist), blogs – both of major organisations 

(e.g. Cancer Research UK) but also of individual researchers, and online 
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reference managers (e.g. Mendeley).161 The altmetric score cleans up and 

normalises the sources to quantify the “digital attention” an article 

receives, thus providing a measure of visibility across mainstream and 

online media.162 

 

7.2.6	  Statistical	  analysis	  	  
Following the ranking of geographical regions in a decreasing order for each of the 

clinical, innovation, academic, and media visibility metrics, the one-sided Wilcoxon 

signed-rank test was used to perform pair-wise comparisons (non-parametric) in view 

of their skewed distributions (see histograms in Appendix 5). Given the scarcity of 

observations for Asia, Central and South America, Middle East, and Oceania (see 

Results), no meaningful comparisons could be performed for these four regions, and 

these four regions were thus excluded from further analysis. Hence, the pair-wise 

comparisons focused between Europe and North America, which represented the two 

groups with the largest number of observations. Statistical analyses were carried out 

with R version 3.5.1 (Bell Laboratories, Berkeley Heights, NJ).  

 

7.3	  Results	  
The search revealed 2,884 articles. Of these, 289 articles were excluded as they 

evaluated aortic interventions in paediatric patients (n=73) or involved an additional 

procedure to the aortic intervention in the same setting (n=216). Of the remaining 

articles evaluating different interventions for aortic stenosis and/or regurgitation 

(n=2,595), 469 articles were further excluded as they did not receive a citation from 

or make a citation to another article within the dataset. The resulting 2,126 articles 

with at least one ingoing or outgoing in-field citation were used to construct the 
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network (Appendix 5). Of these, 1,879 articles made at least one in-field citation 

(“adopters” of innovation) and 1,306 articles received at least one in-field citation 

(“sources” of innovation). The search strategy is illustrated in Fig. 25.  

 

 

Figure	  25	  Flow	  diagram	  illustrating	  the	  search	  strategy	  used	  for	  generating	  the	  citation	  network.  

	  
 

The network consisting of 2,126 nodes (articles) joined by 10,491 links (citations) is 

depicted in Fig. 26. In it, 728 articles reporting studies on TAVI are included, 473 of 

which originate from Europe, 186 from North America, 28 from Asia, 15 from the 

Middle East and 13 from Central and South America.  
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Figure	   26	   The	   giant	   component	   (2,006	   articles,	   10,491	   citation	   links)	   of	   the	   citation	   network	   comprising	  
articles	   concerning	   “aortic	   valve	   stenosis”	  and	   “aortic	   valve	   regurgitation”.	  Nodes	  are	   coloured	  according	   to	  
assigned	   region	   of	   the	   corresponding	   author’s	   affiliation	   (see	   top	   left	   panel	   for	   geographical	   colour	   coding)	  
and	  sized	  according	  to	  the	  number	  of	  citations	  received.   

 

Rankings for all outcomes are illustrated in Fig. 27. Europe and North America 

consistently perform superiorly in terms of all clinical outcomes (i.e. they exhibit the 

lowest mortality and complication rates) whereas the Middle East ranks first for 

mortality and all other complications (i.e. highest reported mortality and complication 

rates) except for disabling CVA where Oceania ranks first. However, as explained in 

the Materials and Methods section, the scarcity of observations for Asia, Central and 

South America, Middle East, and Oceania, did not permit meaningful comparisons for 

these four regions. When focusing on the pair-wise comparison between Europe and 

North America (Fig. 28), Europe ranks higher for mortality than North America 
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though this difference was not statistically significant (p=0.470). On the other hand, 

in terms of all three other complications evaluated, North America ranks higher than 

Europe, though the only difference reaching statistical significance was that relating 

to disabling CVA (p=0.02 for disabling CVA, p=0.149 for major vascular 

complications, and p=0.134 for moderate or severe paravalvular leak).  

 

When looking at academic success and media visibility metrics - as measured by 

citations and altmetric scores, respectively - North America ranks significantly better 

than Europe for both (p=0.021 and p=0.004 respectively). However, in terms of the 

actual diffusion of innovation (TAVI), Europe exhibits superior performance (than 

North America) based on both the volume of patients undergoing TAVI as well as its 

structural virality (though the latter finding was not statistically significant; p=0.342).  
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Figure	  27 Bar charts indicating the total number of patients per region (top panel), the median values 
of clinical outcome measures including mortality-per-person-year, and percentage of patients 
developing major vascular complication, disabling cerebrovascular accident (CVA) and moderate or 
severe paravalvular leak at 30 days post-TAVI (left-hand panel), and other measures including the 
innovation index, and the sum of citations, structural virality and altmetric scores by region (right-
hand panel).	   
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Figure	  28	  Boxplots	  of	  distributions	  of	  clinical	  outcome	  and	  other	  performance	  measures	  for	  North	  America	  and	  
Europe.	  Shaded	  areas	  represent	  the	  interquartile	  range	  whilst	  the	  darker	  areas	  represent	  the	  distance	  between	  
the	  25th	  percentile	  and	  median	  values.	  Asterisks	  denote	  significance	  (p<0.05). 

 

7.4	  Discussion	  
This study evaluating healthcare innovation and patient safety in the context of TAVI 

across different geographical regions - each with its own regulatory framework - 

reports a number of important findings. Prior to discussing these, it is pertinent to 

briefly consider some of the key elements of the world’s oldest and most established 
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regulatory frameworks for medical devices, namely those of the EU and US. This will 

provide the context for interpreting the findings and recognising existing deficiencies 

in need of modification. This study comes at a critical time point as both the EU and 

US are in the process of reviewing and updating their existing regulatory frameworks 

for medical devices.  

 

In the EU, for a medical device to gain market access, it must be granted a CE 

(Conformité Européenne) mark. This can only be issued by Notified Bodies, which 

are independent commercial organisations dispersed across the EU and monitored by 

the Competent Authority of the member state in which they reside. In the UK, the 

Competent Authority is the Medicines and Healthcare Products Regulatory Agency 

(MHRA).198 Once a CE mark has been granted, the medical device can be marketed 

across all EU member states.199 

 

Medical devices are categorised by classes (and sub-classes) according to their risk 

profile, with Class I representing those associated with the lowest risk and Class III 

those with the highest risk (e.g. stethoscopes and TAVI, respectively).199 The two key 

aspects that a Notified Body is looking for when it comes to assessing a medical 

device’s suitability for CE marking, are its safety and performance (i.e. that it 

performs as intended) – but not necessarily its effectiveness (i.e. demonstration of 

clinical benefit).192,193 Even for moderate- (Class IIb) and high-risk implantable (Class 

III) medical devices where clinical (in addition to pre-clinical) data are mandatory, 

these do not need to be randomised. The exact requirements remain elusive as they 

are not available in the public domain.192  
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On the contrary, in the US, regulation is centralised through the Food and Drug 

Administration (FDA) and the evidence requirements are clearly defined for each 

medical device class. For medium-risk (Class II) devices and those shown to be 

‘substantially equivalent’ to pre-authorised devices already available in the market, 

the 510(k) route of substantial equivalence is most commonly followed.193 For 

innovative high-risk (Class III) medical devices, the FDA expects to be presented 

with RCT data that demonstrate not only their safety but also their effectiveness (for 

the intended use).164 This involves a rigorous process known as Pre-Market 

Authorisation (PMA).192  

 

As a result, medical devices (including innovative, high-risk, and/or implantable ones) 

commonly gain their CE mark (and thus enter the EU market), long before they are 

granted FDA approval - with TAVI representing a typical example of this. Both the 

SAPIEN valve (Edwards Lifesciences Corporation, Nyon, Switzerland) and the Core 

Valve (Medtronic, Inc., Minneapolis, MN) gained their CE marks in 2007 in the 

absence of any RCT. In the US, it took another four years for SAPIEN (2011) and 

five years for Core Valve (2012) to be granted approval by the FDA (as a result of the 

FDA’s more rigorous evidence requirements).164 

 

In view of the above, the EU regulatory framework for medical devices has come 

under intense criticism with opponents arguing that the existing system is inadequate, 

lacks rigor (compared to FDA) and is thus putting patients at risk.200 One of the most 

commonly cited examples to support these claims relates to the transvaginal mesh 

implant (Ethicon Gynecare TVT Sling, Johnson & Johnson, New Brunswick, NJ) 

scandal where following market approval, these implantable devices were found to be 
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associated with unacceptably high complication rates (including deaths), which in 

turn resulted in an unprecedented rise in lawsuits and subsequent need for 

explantation in thousands of women.201  

	  
Another widely publicised tragedy that is also commonly cited is that involving the 

PIP breast implants (Poly Implant Prothèse, La Seyne-sur-Mer, France).202 These 

scandals have understandably led to major concerns regarding the regulation of 

medical devices and its impact on patient safety. Using the topical example of TAVI, 

one of the principal innovations in the medical devices sector at present,154 this study 

aimed to evaluate the impact of different regulatory frameworks (and in particular the 

world’s two most established ones) on patient safety but also on the diffusion 

(adoption) of innovations and on innovativeness (i.e. whether they enhance or hinder 

innovation in healthcare). This is an important question in need of a timely answer as 

both the EU and US regulatory bodies are currently in the process of introducing 

reforms to address existing shortcomings in an attempt to prevent such scandals from 

ever happening again.198,202,203  

 

As already mentioned, at least two TAVI models from different manufacturers (one 

European and one American) received their CE marks and were widely implanted in 

patients across Europe for almost 5 years before they were granted FDA approval.164 

Critics would argue that this is yet another example where the EU medical device 

regulator has been ‘lenient’, potentially exposing large numbers of patients to 

unknown risks. However, this is based on the assumption that such innovative, high-

risk implantable devices carry substantial risks for patients that are unknown at the 

time of approval and that a ‘more rigorous’ approach mandating pre-market RCTs 

will expose these.204 
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This brings us to the fundamental issue that this study aimed to explore, which was to 

understand how different regulatory frameworks perform not only in terms of patient 

(and public) safety but also innovation - not forgetting that innovation (especially in 

healthcare) is vital not only for enhancing patient outcomes but also to ensure wider 

societal prosperity in the longer term (through public wellbeing).39,205 Based on this 

study’s findings as well as the literature, recommendations for stakeholders and 

policymakers are provided on how the existing regulatory frameworks can be 

improved through striking a (finer) balance between promoting patient (and public) 

safety and smothering innovation.206 

 

As evidenced by the findings, though mortality was found to be higher in Europe 

compared to North America, the difference was not statistically significant (p=0.470). 

In view of the dataset size (exceeding 2,000 publications reporting on more than 

160,000 patients), this lack of statistical significance makes this finding highly 

reliable. This is also supported by the literature on TAVI registries across both the EU 

and US reporting similar mortality rates on both continents.207-209  

 

To ensure the full patient safety profile was evaluated, a number of complications 

beyond mortality were also assessed. These included 30-day rates for disabling CVA, 

major vascular complications, and the development of post-TAVI paravalvular leak. 

Again, no statistically significant difference between the EU and US was found for 

major vascular complications and paravalvular leak rates, whilst for disabling CVA, 

the rate was higher in the US (compared to the EU), a difference that was also found 

to be statistically significant (p=0.002). On a global scale, both the EU and US 
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consistently ranked low for mortality and all other complications with the Middle East 

topping the rankings except for disabling CVA where Oceania exhibited the highest 

complication rate.  

 

These findings reiterate the vital role that medical device regulatory frameworks play 

in ensuring the safety of patients and the public (with the EU and US where the most 

robust regulatory eco-systems feature consistently outperforming all other 

geographical areas). At the same time, what becomes apparent is that ‘over-

regulation’ (in the form of compulsory randomised data at the pre-market evaluation 

stage) does not necessarily translate to enhanced patient safety nor does it translate to 

superior clinical outcomes (with the EU and US performing evenly across the clinical 

spectrum). Another important finding relates to the role of over-regulation as a 

potential barrier to innovation in view of the marked differences seen in terms of 

adoption and diffusion of innovation (favouring the EU over the US). The policy 

implications of these findings are significant, especially as over-regulation has also 

been shown to substantially increase associated healthcare costs in a number of 

studies.193,210  

 

Based on this, more rigid data requirements demanding RCTs for all high-risk novel 

medical devices prior to market approval may need reconsideration. Though RCTs 

are undoubtedly among the most reliable sources of evidence when it comes to 

comparing healthcare interventions,43 “absence of evidence is not evidence of 

abscence”.213 Moreover, RCTs - especially when it comes to comparing minimally 

invasive with open treatments - have been shown to suffer a number of limitations.63 

Finally, as adequately powered multi-centre RCTs commonly take years to complete, 
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making randomised data mandatory for initial approval, will inevitably delay patient 

access to innovative treatments. Thus, where an innovation has been shown to address 

an unmet clinical need for a common and life-threatening illness (as was the case with 

TAVI for inoperable aortic stenosis),154,165 it may be justifiable to authorise its initial 

market approval (under strict conditions – see below) without having to wait for 

RCTs.  

 

Prior to discussing novel regulatory approaches aimed at enhancing both patient 

safety and innovation (a fine balance that is proving increasingly difficult to attain), it 

is important to consider what lessons can also be learned from the aforementioned 

scandals involving other high-risk implantable devices. In the case of TVT implants, 

both the FDA and EU regulators failed to protect patients from their unknown (at the 

time) risks and, importantly, when these risks were eventually identified, this was not 

through RCTs.214 Similarly, in the case of metal-on-metal hip replacements, the 

medical device (DePuy ASR™ XL Acetabular Cup System, Johnson & Johnson, New 

Brunswick, NJ) had received approval throughout the world including by the FDA for 

the US market (through the 510(k) process). Instead, concerns about these implants 

were first raised much later, initially in Australia in 2008 and subsequently in the UK 

in 2010, through their respective National Joint Registries’ audits that revealed 

excessively high revision rates. This ultimately led to the device being recalled 

(including by the FDA), leading (once again) to thousands of medicolegal claims 

around the world and the subsequent need for mass explantations.215  

 

These findings match closely those of the TAVI case in this study where, once more, 

neither the EU nor US proved superior in terms of ensuring the safety of their patients 
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and public despite the significant differences in their regulatory requirements. Those 

failures in protecting patients and the public – the indisputable number one priority of 

all regulatory systems - call for a radical rethink on how medical device regulation 

can be best improved on a global level. 

 

It is thus encouraging to see that a number of initiatives are currently being introduced 

(or at least being considered) in an attempt to optimise both patient and public safety 

but also promote innovation. A prime example includes the establishment of the 

Medical Device Epidemiology Network (MDEpiNET), a global public-private 

partnership initiated by the FDA. MDEpiNET is aimed at promoting public health and 

informing stakeholders (including surgeons, patients, regulators, and policy makers) 

through the use of existing resources, thus presenting a lower-cost “national medical 

device surveillance system”.217  

 

MDEpiNET signifies a paradigm shift towards a much-needed medical device 

ecosystem that will contribute to overcoming many of the existing regulatory barriers 

through collaboration among all stakeholders. The need for inter-disciplinary 

collaboration that will see the surgical community, industry, regulatory bodies, and 

patients working closely together is now widely recognised by the FDA. Such a 

collaborative approach will streamline regulatory evaluation to expedite the delivery 

of innovative and effective medical devices to patients in the safest possible way.189  

 

A notable example of how this can be achieved involves the reconfiguration of certain 

regulatory barriers from PMA to Post-Market Surveillance (PMS). Through the 

establishment of registries and prototype pre-market studies embedded within these, 
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data can be continuously collected and analysed, generating up-to-date, real world 

evidence to support regulatory decision-making.217 This can only be possible if 

regulatory bodies work very closely with surgeons and the industry across all stages 

of surgical innovation.39 Though promising, implementation is likely to involve a 

prolonged and demanding process for a number of reasons.    

 

Some of the key obstacles are likely to relate to accessing, linking, and analysing real 

world data in an automated and timely fashion.187 In addition to the practical 

challenges posed by the overwhelming volume and speed at which real world data are 

continuously being generated – which to an extent can be addressed through advanced 

analytical technologies developed for big data (see Chapter 2) – the legal barriers may 

prove insurmountable. At a time where cybersecurity scandals involving personal data 

breaches and misuse are becoming increasingly prevalent and, in response, data 

governance is getting progressively arduous, accessing highly sensitive data involving 

patients but also commercial products (medical devices) that can generate vast profits 

is likely to prove challenging.218 Moreover, regulatory barriers will not stop even 

if/when data access is granted. On the contrary, they are likely to intensify when it 

comes to how these data can (and cannot) be used. Finally, for the data to generate 

evidence used to inform policy, linkage between different databases will be needed, 

something which will require decryption, thus raising (once more) concerns regarding 

data privacy and their potential for misuse.219  

 

Beyond the legal and analytical challenges posed, PMS requires every single medical 

device to be traceable throughout its Total Product Life Cycle (TPLC) to the 

individual patient in whom it has been used/implanted. Promising steps are already 
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being taken in this direction by both the FDA and European Commission including 

not only on labeling requirements through the creation of Unique Device 

Identification (UDI), but also regarding legislation concerning data submission and 

the formulation and maintenance of databases (which include detailed guidance for 

data storage, encryption, and access to maximise online safety and ensure 

transparency).220,221  

 

The case for change in the medical device ecosystem is compelling.222 Whilst the 

aforementioned PMS interventions are being implemented, more needs doing in the 

interim to expedite the approval and adoption of innovative medical devices so that 

patients can benefit from these in a timely manner. Once more, collaboration is the 

key with a notable example being the Accelerated Access Pathway (AAP), a unique 

collaborative between the NHS and industry aimed at “improving patient access to 

breakthrough technologies and treatments in a cost-effective model”.222 The aim of 

the AAP is to identify highly transformative innovations at an early stage and 

streamline their route to the market so as to maximise the benefit for patients and 

improve the efficiency of the existing system. Similar to PMS, this will be achieved 

by minimising the (many) barriers to innovation uptake by generating real world 

evidence to supplement clinical trials.223  

 

Prior to concluding, it is important to acknowledge the strengths and limitations of 

this study. A key strength relates to the dataset, which involved over 2,000 

publications reporting on more than 160,000 patients. Aside of volume, which makes 

the findings robust, the dataset is multi-dimensional consisting of clinical, 

bibliometric, visibility, and innovation data. This broad spectrum, combined with the 
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diverse analytical tools employed (including ‘traditional’ statistical techniques, 

established epidemiological methods, and network analysis), make this the first study 

of its kind.  

 

On the other hand, a key limitation relates to the fact that the analysis focused on a 

specific topic. Despite this, it would be safe to assume that the findings are 

generalisable to other medical devices since i) TAVI, as a Class III implantable 

cardiovascular device, carries the highest risk profile for patients and ii) the current 

findings on regulatory and safety aspects of TAVI are in alignment with those 

previously reported for other implantable devices as discussed above. A further 

limitation relates to the scarcity of observations outside the EU and the US, which 

made it impossible to make specific policy recommendations for the RoW countries 

aside of the need for developing more structured regulatory frameworks based on 

those already in place in the EU and the US (in view of their demonstrable 

consistently superior outcomes in terms of both patient safety and innovation). 

 

7.5	  Conclusion	  
The medical device regulatory ecosystem is in the process of undergoing major 

transformation from the traditional pre-market authorisation model to post-market 

surveillance in an attempt to strike the right balance between promoting patient safety 

and enhancing innovation. The findings presented here, combined with lessons 

learned from global scandals involving other high-risk implantable medical devices, 

reiterate the need for a novel collaborative approach that will see the surgical 

community, industry, regulatory bodies, and patients working closely together to 

streamline the regulatory evaluation for innovative medical devices. This exclusive 
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partnership will greatly enhance the ability to gather data intelligence towards the 

generation of real world evidence that can supplement clinical trials, support 

regulatory decision-making, and inform policy. This study provides important 

evidence for stakeholders and policymakers that justifies the need for transitioning 

towards a ‘smart’ regulatory ecosystem for all medical devices, including those 

considered to be high-risk.  

 

7.6	  Chapter	  summary	  
 

The objective of this chapter’s study was to understand how distinct medical device 

regulatory systems differ across the world in terms of their patient safety and 

innovation profiles using network and regression analysis. 

 

Pre-clinical and clinical original research studies (n=2,595) reporting on TAVI were 

extracted from the Web of Science® database and categorised based on geography. 

These reported on 160,892 patients from all over the world undergoing treatment for 

aortic valve disease in the period between 2002 (when the first live human TAVI case 

was performed) and December 2017 (time of data extraction).  

 

TAVI constituted the innovative, high-risk intervention studied with the main 

outcome measures being geographical differences in terms of patient volume, 

structural virality, innovation index, mortality-per-person-year, and 30-day rates for 

disabling cerebrovascular accident (CVA), major vascular complications, and 

moderate-severe paravalvular leak.  
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The world’s most established regulatory frameworks (EU and US) were shown to 

consistently perform superiorly in terms of all clinical outcomes compare to the Rest 

of World (RoW). When directly comparing the EU and US, no statistically significant 

differences were found in terms of mortality or complications rates (except for 

disabling CVA favouring the EU), despite significant differences in their regulatory 

requirements. In terms of innovation, the EU exhibited superior performance based on 

the number of patients treated, their timely access to TAVI, and its structural virality.  

 

At a time when the medical device regulatory ecosystem is transitioning from the 

traditional pre-market authorisation model to an active post-market surveillance, this 

study provides important evidence for stakeholders and policymakers that justifies the 

need for close collaboration between the surgical community, industry, regulatory 

bodies, and patients to streamline the regulatory pathway and expedite the delivery of 

innovative and effective medical devices to patients in the safest possible way.  
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8.	  Conclusions	  and	  Future	  Work	  
 

This thesis examined surgical innovation from a novel perspective. Network analysis 

was implemented for the first time in surgical innovation to map diffusion and 

measure the evidence-based implementation value generated using big data spanning 

across the several dimensions of innovation in surgery. The network-based surgical 

innovation metrics developed and validated as part of this thesis are already proving 

to be key in evaluating surgical innovations and shaping the future of surgery.224 This 

is through the provision of new intelligence crucial for informing healthcare policy, 

optimising medical device regulation, and directing surgical research strategy on a 

global scale.  

  

Following an overview of what innovation in surgery entails, the original concept of 

the surgical innovation funnel was presented. This, combined with the novel surgical 

innovation metrics that were developed and validated, exemplifies the first complete 

and quantitative surgical innovation framework. Previous frameworks considered the 

first stage of surgical innovation to be “the first use of a new procedure in a patient”.50 

However, surgical innovation commonly involves a number of preceding steps.31 The 

surgical innovation funnel not only accounts for those pre-clinical steps, but also 

permits the measurement of surgical innovation for the first time (the unifying 

limitation of all pre-existing frameworks being their qualitative nature). 

 

The ability to measure surgical innovation is crucial. The five original research 

studies included in this thesis illustrate how novel surgical innovation metrics were 

developed and validated and how they can be used in practice to inform healthcare 
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policy and optimise surgical decision-making. Moreover, the power of network 

analysis of real world surgical collaboration networks was explored to uncover the 

barriers and catalysts to surgical innovation, a key aspect for promoting high-quality 

surgical research and enhancing patient care globally. Finally, additional aspects of 

surgical innovation were also explored including the influence of marketing on 

diffusion of innovations in the global healthcare setting and how different regulatory 

frameworks can impact on both healthcare innovation and patient safety.  

 

The first study illustrated how network analysis can be used to examine the structural 

foundations of innovation diffusion in surgery. Based on citation networks, diffusion 

was mapped out as a time-varying cascade of adoptions propagating over potentially 

many generations of adopters. The network-based metric of structural virality was 

presented enabling the creation of rankings from the most ‘viral’ innovations to those 

that only generate short-term surges in popularity and then quickly die out. A second 

metric, the innovation index was also developed aimed at capturing the intrinsic value 

of a given surgical innovation based on its evidence-based implementation. Both 

innovation metrics were validated using big data (including from the real world) that 

exceeded seven million hospital stays per year (NIS® database).  

 

The second study involved the construction and analysis of a different type of surgical 

innovation network. Based on the fact that surgical innovation is a social process 

originating from complex interactions among diverse participants, the real world 

collaboration network for robotic surgical research was built and analysed. The 

importance of establishing open networks, forging a geographically diverse 

international profile and actively collaborating with industry in enhancing both 
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research impact and innovation were illustrated. This study can be regarded as proof 

of concept signifying how network analysis can be used in surgical research to foster 

innovation through strategic partnerships.  Evidence was also provided on the ways in 

which existing collaborative efforts can be modified and future ones strategically 

planned to maximise research performance and enhance patient care. 

 

The third study depicted the application of network analysis combined with 

simulation modelling to examine the impact of Brexit on a key area in healthcare in 

which the UK is set to be a global leader. With the UK setting its independent path on 

the global stage outside the EU following its exit from the block on 31 January 2020, 

this represents a much-needed study, especially as the future UK-EU framework still 

remains undetermined. It is the first Brexit impact study to employ network analysis 

and thus can be considered as a prototype for the conduction of similar studies in 

other important domains for the UK’s prosperity, such as international trade and 

financial services. Both sectors are fundamental to the UK economy and ideally suited 

for network analysis that can be used to map and measure relationships and flows 

among the represented agents, e.g. nodes can denote countries or financial institutions 

and links the flow of goods or services, respectively.225 

 

The fourth study provided an in-depth examination of disruptive innovation in 

healthcare. Big data originating from a variety of heterogeneous sources (including 

clinical, academic, and social) were extracted and linked to study TAVI, a healthcare 

innovation that has disrupted the modern cardiovascular medical device market.9 

Network analysis and multivariate regression were used to investigate the factors 

driving its unparalleled diffusion, with a particular attention to the underlying 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   147	  

evidence base and marketing strategies employed by manufacturers. A number of 

important findings illustrating the power of marketing in enhancing the diffusion of 

innovations in healthcare and ensuring their translation to market success were 

reported. The demonstrated implementation-evidence mismatch advocates the power 

of non-clinical factors (i.e. marketing) in the diffusion of certain (heavily promoted) 

innovations in healthcare and should act as a wake-up call for both clinicians and 

regulatory bodies when it comes to introducing novel medical devices in the market.  

 

The fifth and final study examined different regulatory frameworks across the world 

in terms of not only innovation but also - crucially - patient safety. At a time when the 

regulation of the medical device industry has come under heavy criticism and calls for 

further intensifying it are increasing, this represents a principal and timely study.  

Using a network-based approach it elucidated the need for a collaborative approach 

that will see the surgical community, industry, regulatory bodies, and patients 

working closely together to streamline regulatory evaluation to expedite the delivery 

of innovative and effective medical devices to patients in the safest possible way. This 

will ensure greater transparency and facilitate the transition from the traditional pre-

market authorisation model to an active post-market surveillance facilitated by 

‘smart’ technology. These findings provide important evidence for stakeholders and 

policymakers. 

 

Before closing, it is important to acknowledge the strengths and limitations of this 

thesis. The key strengths relate to the type of data pooled and the original methods 

employed to analyse these. This is the first time that network analysis has been used 

in the study of surgical innovation, and its practical value in mapping and measuring 
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surgical innovation was extensively demonstrated through the extraction, curation, 

and linkage of big data from a variety of heterogeneous sources. These extended 

beyond the (traditional) clinical setting to also include bibliometric databases, the real 

world, as well as alternative metrics (altmetrics). In doing so, healthcare innovation 

was examined across its several dimensions. Furthermore, a number of different 

networks were constructed and analysed (citation, collaboration).  

 

In terms of limitations, these include the fact that innovation was measured only at the 

meso (institutional) and macro (national) levels. Moreover, only few examples of 

healthcare innovations were studied (robotic surgery, TAVI). Although this will 

naturally restrict the generalisability of the results, the methodology has now been 

clearly laid out for future studies that can be performed at any level – including micro 

(surgeon-scientist) level - and for any innovation (e.g. 3D printing, artificial 

intelligence, telemedicine). Of note, this limitation is inherent to innovation studies 

more widely, since each distinct innovation, whether technological or other, would 

need to be evaluated on an individual (case-by-case) basis.  

 

Another limitation is that the ethical aspects of surgical innovation were not 

addressed. This however represents such an important and voluminous topic that 

would in itself form the subject of a separate thesis. What is crucial to reiterate is that 

innovation should be patient-centered and not driven by commercial interests and/or 

surgeon research interests. For this to be achieved, a collaborative approach similar to 

that described for regulation is needed, where patients, surgeons, and the industry all 

work together in a close partnership. This is imperative because innovation must add 

value, and what patients value may markedly differ to what surgeons or the industry 
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value.226 In the current environment where costs and metrics are becoming 

increasingly important, the work conducted in this thesis can serve as a building block 

for future studies on surgical ethics and, in particular, on the challenges these can 

pose on surgical innovation and how they can be overcome.   

 

To conclude, this thesis offers unique new opportunities for understanding, modelling, 

and measuring surgical innovation and ultimately for enhancing this through the 

assessment, comparison and ranking by generative value. Importantly, the 

methodology described in this thesis can be used to evaluate any innovation in 

surgery (and beyond) and at any level required. In doing so, it lays the foundations for 

future studies across the entire spectrum of surgical research that will foster 

innovation and enhance patient care. The novel surgical innovation metrics developed 

may prove of great value especially for guiding policy makers, funding bodies, 

surgeons, and healthcare providers in the current climate of competing national 

priorities for investment. Indeed, they already form part of the Future of Surgery 

report recently published by The Royal College of Surgeons of England.  
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Appendices	  
Appendix 1 

S1. Data 

S1.1 The construction of the citation networks 

 

To construct the network of citations among articles concerning robotic surgery, we 

searched in Elsevier’s Scopus database for all those articles related to robotic surgery. 

In total, we retrieved 14,775 articles that were assigned to the major subject area 

“Medicine”, including “robotic” in the title or in the abstract or in the keywords, and 

were published from 1974 until the 19th of December 2015.  

 

In Scopus, articles can be assigned to one or more major subject areas according to 

the classification of the Journal where they have been published. Journals are 

typically assigned to one or more subject areas of different granularity. In total, there 

are 27 major subject areas, and 313 specific subject categories according to the 

Scopus® Subject Areas and Subject Categories. The scientific journals that belong to 

the major subject area “Medicine” represent 34% of all journals included in Scopus 

(last update in October 2016). Notice that all journals included in the MEDLINE 

database are also included in Scopus. Keywords, when available, included those 

selected directly by the authors of articles and those assigned manually by a Scopus 

team of professional indexers, according to the MeSH vocabulary and the EMTREE 

medical terms. Typically, Scopus adds index terms to about 80% of articles included 

in the Scopus database.  
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Since the Scopus database only included part of the articles published in 2015, we 

decided to filter out from our data set the 1,504 articles published in that year. 

Moreover, our original data set included 31 articles expected to be published in 2016 

that we decided not to include. Once it was cleaned and filtered as described above, 

the data set included a total of 13,240 articles. 

 

Given these 13,240 articles of interest, we collected the unique electronic 

identificators (EIDs) used by Scopus database to uniquely identify them. We then 

used the EIDs to retrieve the information needed to build an acyclic directed network 

of citations. For each of the 13,240 articles that received at least one citation, we 

retrieved the EIDs of the articles that made a citation to the focal article during the 

period starting from the year of the publication of the article up to the 31st of 

December 2014. In particular, we considered only citations originating from articles 

pertaining to robotics in Medicine and published by the end of 2014 (i.e., belonging to 

our set of 13,240 articles). In this way, we restricted our focus to the citation network 

among articles only within robotics in Medicine. Indeed, for example, if any given 

article among the set of 13,240 ones had received citations only from articles not 

belonging to this set of 13,240 articles or from articles pertaining to robotics in 

Medicine but published after the 31st of December 2014, then this article would be 

associated with a zero count of citations. On the one hand, among the 13,240 articles 

here considered, 5,961 received at least one citation from an article belonging to the 

same set (i.e., 5,961 articles have an in-degree equal to or higher than one). On the 

other, 8,158 articles among the 13,240 ones have made at least one citation to another 

article belonging to the same set (i.e., 8,158 article have an out-degree equal to or 
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higher than one). A total of 9,423 articles out of the 13,240 ones are connected to the 

others through at least one incoming or outgoing citation.   

 

In total, our data set includes 4,860 articles. Among these, there are 2,101 articles 

across ten surgical specialties (see section S2.2) that received at least one citation. 

Each of these 2,101 articles represents the seed of a diffusion cascade. In addition, the 

data set includes 1,049 articles across the ten specialties that did not receive any 

citations, but are part of chains of citations leading to articles in those specialties. 

Finally, the data set includes 1,710 articles that do not belong to any of the ten 

specialties, but are part of chains of citations leading to articles in those specialties.  

 

 

S1.2 Visualisation of the citation network 

 

Figure 8 in the main text shows the network of citations among the 9,423 articles that 

are connected to other articles through at least one incoming or outgoing citation. For 

unweighted networks, it is common practice to attribute unitary weight to the links. 

The algorithm used to visualize the networks is called ForceAtlas2, which is the 

default layout algorithm.223 It implements an attraction-repulsion model aimed at 

simulating a physical system: unconnected nodes pull each other further apart, while 

links between connected nodes push the nodes closer to each other. The process of 

physically locating nodes depends only on connections between nodes, and the final 

result varies according to the initial state. Possible exogenous or endogenous 

attributes of nodes are not taken into account in locating them. The position of each 

node cannot be interpreted on its own, but needs to be compared with the position of 
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the other nodes, depending on the whole structure of connection. The energy model 

that underpins the ForceAtlas2 algorithm is based on two simple rules: (a) the 

attraction between two nodes depends linearly on the distance between them; and (b) 

the repulsion force between any two nodes that is inversely proportional to the 

distance between them, and is directly proportional to the product of their degrees. In 

this way, repulsion is weaker between a very connected node and a poorly connected 

node than between two very connected nodes. Given that in our specific application 

we are considering binary networks with unitary weights, the distance between any 

two nodes is set to be equal to one, and is constant across all connections in each 

network. Unlike other algorithms, and as a result of the interplay between the 

attraction and repulsion forces implemented, ForceAtlas2 produces densely populated 

spatial regions that identify structural communities. Moreover, ForceAtlas2 comes 

with a set of optional settings that can be used by users to optimize the visualization 

of networks. One of the settings used to depict networks is the “scaling” constant that 

is applied to stretch homogenously all the dyadic repulsion forces between nodes in 

order to expand the network distances without affecting the relative positioning of the 

nodes in the layout. We set the “scaling” constant at a value equal to two (default is 

one). In this way, the image becomes more readable, thus enabling an interpretation 

of the networks. We also use the “Gravity” option, and set the parameter at 70 

(default is one). This prevents disconnected components from being pulled apart from 

each other. Moreover, it enables nodes within these components to be placed toward 

the center of the visualized network. Finally, we used the “LinLog Mode” option that 

applies a logarithmic function to the attraction force. This creates a visualization of 

the network that maximises the modularity of the community structure. 
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S2. Methods 

S2.2 Partition of articles into groups related to surgical specialties  

 

We clustered the articles into 17 groups. Among these, 16 correspond to 16 surgical 

specialties/procedures: prostatectomy, cardiac surgery, nephrectomy, hysterectomy, 

cystectomy, thyroidectomy, colectomy, pulmonary lobectomy, TORS, hepatectomy, 

oesophagectomy, gastrectomy, cholecystectomy, skull base surgery, transplantation 

and microvascular surgery. In addition, we created a group of articles that did not fall 

into any of the above 16 groups. In order to partition the articles into these groups, we 

searched for those articles containing words in their titles that uniquely identify the 

various surgical operations. For example, for robotic prostatectomy we identified 

1,551 articles within the broad field of robotic surgery that contain “prostatectomy” or 

“prostate” in their titles.  

 

We then selected ten of the 16 surgical specialties/procedures corresponding to those 

with a number of publications higher than 100 out of the original 13,240 articles that 

belong to the major subject area “Medicine” and are concerned with robotics. In 

particular, the following six specialties were filtered out: cholecystectomy, 

oesophagectomy, gastrectomy, transplantation, skull base surgery, and microvascular 

surgery. In total, our study focused on the following ten surgical 

specialties/procedures: prostatectomy, cardiac surgery, nephrectomy, hysterectomy, 

cystectomy, thyroidectomy, colectomy, pulmonary lobectomy, transoral robotic 

surgery (TORS), and hepatectomy. Figure 7 in the main text shows that these ten 
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groups of articles related to the robotic-assisted surgical specialties evolve over time 

in different ways.  

 

We applied a pattern matching technique (Regex) for allocating each article among 

the 5,961 that received at least one citation to one of the main 16 surgical specialties, 

i.e., cardiac surgery, cholecystectomy, colectomy, cystectomy, oesophagectomy, 

gastrectomy, hepatectomy, hysterectomy, microvascular surgery, nephrectomy, 

prostatectomy, pulmonary lobectomy, skull base surgery, TORS, transplantation, and 

thyroidectomy. 

 

Specifically, we identified all those articles containing in their title words or 

combination(s) of words related to the above mentioned 16 surgical specialties as 

detailed in Table S1. Regex (or regular expression) is a language for logical pattern 

matching. It is chiefly used to produce text patterns matching a given text. For 

example, using the regular expression language when we searched for all the titles 

containing either “prostatectomy” or “prostate” followed by or preceded by any text, 

we searched for a pattern written as “prostat\w*”. The expression “\w*” after 

“prostat” (the common text pattern between the two words “prostatectomy” and 

“prostate”) is meant to represent all the possible combinations of characters following 

the common string pattern. The symbol “|” in a regular expression stands for the 

logical conjunction “or”, meaning that, for example, in “cystectomy| bladder” we 

searched for all titles containing either the word “cystectomy” or the word “bladder”.  

Moreover, as occurred for example in the case of cardiac surgery, we have identified 

a set of words uniquely associated with all those articles pertaining to this specialty. 

Among them, there is also a combination of two words such as “coronary” and 
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“bypass” that can be also combined with “artery” to form “coronary artery bypass”. In 

order to search for both “coronary bypass” and “coronary artery bypass” we used the 

string pattern “coronary.*bypass” that matches all those patterns within the title 

starting with the word “coronary”, ending with the word “bypass”, and (although not 

necessarily) containing some other object (e.g., word, space, hyphen) between those 

two.  

 

Finally, to address possible differences in language, as for example in the case of 

oesophagectomy, depending on whether the authors use American English or British 

English, we can distinguish between titles containing “oesopha\w*” or “esopha\w*” 

as a common string pattern followed by any string of characters. In this case, the 

regular expression to use is “o?esopha\w*”.  

Surgical specialty Regular expressions  

cholecystectomy " cholecystectomy| gallbladder" 

cardiac surgery " heart| coronary| coronary.*bypass| cardiac| valve| atrial septal defect| atrial fibrilation| 
ablation| pacemaker leads| mitral| aortic" 

colectomy " colectomy| colorectal| colonic| ca?ec\w*| hemicolectomy| right| transverse| left| 
sigmoid\w*| rectum| anterior resection" 

cystectomy " cystectomy| bladder" 

gastrectomy " gastrectomy| stomach| sleeve" 

hepatectomy " hepatectomy| liver| hepatic" 

hysterectomy " hysterectomy| salpingo-oopherectomy| uterus| fibroid| endometri\w* " 

microvascular surgery " free.*flap| microvascular" 

nephrectomy " nephrectomy| renal" 

oesophagectomy " o?esopha\w* 

prostatectomy " prostat\w*" 

pulmonary lobectomy " pulmonary.*lobectomy| lung.* lobectomy| bronch\w*.*lobectomy| lung| pulmonary| 
bronch\w*" 

skull base surgery " skull.*base| pituitary" 

thyroidectomy " thyroid\w*" 

TORS " transoral.*robot| TORS" 

transplantation " transplant\w*" 

Table S1. Regular expressions used to cluster articles into groups related to surgical specialties. 
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S2.2 Analytical definition of measures 

 

S2.2.1 Citations 

In the citation network, the nodes are the articles, while a directed link originates from 

one article to another when the former makes a citation to the latter. As citations can 

only point backward in time, from newer articles to older ones, there are no closed 

loops of directed links in citation networks. As such, these networks are acyclic.73  

 

Each article in the network is characterized by the count of citations received from 

other articles belonging to the network that includes all published articles pertaining 

to robotic surgery. So constructed, the number of citations received by an article 

corresponds to the in-degree of the corresponding node in the citation network, i.e., 

the number of links pointing to that node. Let us define 𝑨 = [𝑎!"] as the adjacency 

matrix describing the connections among all the articles (nodes) in the network, such 

that the entry 𝑎!" is equal to one if there is a directed link (citation) from i to j, and 

zero otherwise. Thus, the count of citations citi received by an article i or, 

equivalently its in-degree 𝑘!!"in the network of citations, can be defined as follows 

 

𝑐𝑖𝑡! =   𝑘!!" =    𝑎!"
!

  . 

  
 

 

 

S2.2.2 Cascades, structural depth and structural width 
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Any cited article can be considered a seed node s from which a cascade Cs originates. 

We define a cascade Cs as the set of nodes including the seed node s and all nodes 

connected to node s through direct or indirect links. 

 

To calculate structural depth, for each seed node s, we computed all shortest directed 

paths originating from each pair of nodes belonging to the cascade Cs. Given two 

nodes i and j belonging to Cs, the shortest directed path from node i to node j is given 

by the length of the shortest sequence of directed links that separate node i from node 

j.2 We denote with 𝑑!,! the length of the directed shortest path from node i to node j 

within a given cascade, and with l the number of all directed shortest paths connecting 

all pairs of nodes in the cascade. Note that, given the directed nature of our network, 

the existence of a shortest directed path from node i to node j does not necessarily 

imply that a shortest path between node j and node i also exists. Therefore, because in 

a citation network paths are always directed backwards in time, and thus closed loops 

are not allowed, each pair of articles i and j contributes only once to the value of 

𝑠𝑑!!to the extent that a directed path exists from article i to article j, or vice versa. 

 

Our measure of structural depth 𝑠𝑑!!draws on, and extend, a classical graph property, 

the Wiener index, that was originally proposed in mathematical chemistry.3 The 

application of the Wiener index to online diffusion cascades was recently introduced 

by Goel and colleagues.4 Our definition of structural depth builds upon this analytical 

tradition. Like the measure of structural virality proposed by Goel and colleagues,4 

our measure takes into account all shortest paths; however, unlike the Wiener index 

and Goel et al.’s structural virality, our measure of structural depth explicitly accounts 

for the direction of links. In particular, given the acyclic directed nature of the 
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network of citations, we chose to focus only on directed shortest paths between pairs 

of articles.  

 

An important property of structural depth is that it varies as a function of the size of 

the cascade only under certain conditions. Specifically, in the case of a stylized tree-

like cascade in which each article is cited by at most k other articles (i.e., a k-ary 

rooted tree), 𝑠𝑑!!will increase with the total number of articles N in the cascade only 

when k << N. Indeed, when k << N is kept unchanged, an increase in N will amplify 

the number of generations in the cascade, thus increasing 𝑠𝑑!! . In particular, in a 

complete k-ary tree-like cascade (i.e., a cascade in which each article that is not a leaf 

is cited by k other articles, and all articles that are leaves have the same length), 

𝑠𝑑!!will be proportional to the height of the cascade. Conversely, when k ≈ N, an 

increase in N will only produce larger broadcasts, with virtually no effect upon 

𝑠𝑑!!(approaching the value of one in the limiting case of the star graph).  

 

To calculate the structural width 𝑠𝑤!!of cascade Cs, for each article i in Cs (including 

seed article s), we computed 𝑐𝑖𝑡!!, namely the number of citations received by all 

articles citing article i, and then calculated the average of such values over all articles 

in Cs. To obtain 𝑐𝑖𝑡!!, for each article i in Cs (including seed article s), we calculated 

citi, namely the number of citations received by i, and then calculated the average of 

such values over all articles in Cs. 

 

Figure 9 (panels a and b) in the main text shows two simple cases that differ in terms 

of their cascade structure. Even though the two seed nodes have the same number of 

citations, they are associated with different values of structural depth and width. Table 
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S2 illustrates how the lengths of the shortest paths were calculated on each of the two 

cases. Table S3 illustrates how citations and second-step citations were calculated for 

each node in each of the cascades. Tables S4 shows how citations, structural depth 

and structural width were computed in each of the two examples.  

 

 Case a) Case b) 
length of shortest path count  length of shortest path count  

1 3 1 22 
2 0 2 19 
3 0 3 14 
4 0 4 8 

Table S2. Count of shortest paths by length in the cases in Figure 4 (panels a,b; main text). 

 
 

Case a) Case b) 
node citations second-step citations node citations second-step citations 

s 3 0 s 3 5 
1 0 0 1 2 2 
2 0 0 2 1 2 
3 0 0 3 2 2 
   4 2 2 
   5 0 0 
   6 2 4 
   7 0 0 
   8 2 2 
   9 0 0 
   10 2 0 
   11 2 0 
   12 2 0 
   13 2 0 
   14 0 0 
   15 0 0 
   16 0 0 
   17 0 0 
   18 0 0 
   19 0 0 
   20 0 0 
   21 0 0 
   22 0 0 

Table S3. Count of citations and second-step citations in the examples in Figure 4 (panels a,b; main 

text).	  

	  
	  
	  
 

Measure  Case a) Case b) 
Citations 3 3 
Structural depth 3/3=1 (1×22+2×19+3×14+4×8)/63=2·127 
Structural width [(0×4)/4]/[(0×3+3×1)/4] = 

(0/4)/(3/4) = 0 
[(0×16+2×5+4×1+5×1)/23]/[(0×12+1×1+2×9+3×1)/23] = 

(19/23)/(22/23)=0·86 
Table S4. Citations, structural depth, and structural width in two examples in Figure 4 (panels a,b; 

main text). 
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Below we report values of structural depth for each of the examples in Figure 9 

(panels a,b; main text) calculated using the formula introduced by Goel et al.,4 and 

compare them with the ones calculated with our measure (structural depth).  

 
  

Measure  Case a) Case b) 
Structural virality (2×6+1×6)/12 = 1·5 (1×44+2×62+3×48+4×56+5×80+6×88+7×80+8×48)/506=4·76 
Structural depth 3/3=1 (1×22+2×19+3×14+4×8)/63=2·13 
Table S5. Structural virality based on Goel et al.,4 and structural depth. 

 
 
 
S2.3 Measuring innovation  

S2.3.1 The innovation funnel and the innovation value chain 

Innovation can hardly be defined unequivocally across domains. In particular, in the 

context of surgery, innovation may relate to manufacturing and advancement of 

medical devices, improvement in surgical technique or approach, change in service 

delivery process, or organizational reconfiguration that must be “altogether new, new 

to anatomic location, and new to the category of patient”.5 

 

Our study has benefitted from the use of two concepts originally applied to industrial 

innovation: the innovation funnel and the innovation value chain.79,224 The surgical 

innovation funnel (SIF) depicts the process along which new ideas, once introduced 

(idea generation), progress until only those that are successful in being materialized 

can reach the stage of idea conversion or materialization (e.g., manufacturing of a 

new medical device, performance of novel first-in-human surgical technique, or 

introduction of a new service delivery model in surgical practice). As the funnel 

further narrows, many of these ‘materialized’ innovations will die out while a select 

minority will continue until they reach the final implementation stage (i.e., usage of a 
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new medical device or surgical technique in a number of patients but confined within 

a trial and/or institution). If implementation succeeds and the innovation is widely 

employed, then the diffusion process can be regarded as having reached its final stage. 

For instance, this occurs with the FDA-approval and market release of a new medical 

device, or the international uptake of new surgical technique or the introduction of a 

new service delivery model in routine surgical practice. This progressive ‘natural 

selection’ process underlying the innovation chain has inspired our measure of 

innovation value, the innovation index, that is meant to express the influential role of 

a surgical innovation as a function of the degree to which it has reached its final stage 

of implementation.  

 

S2.3.2 Innovation index 

In order to assess the level of success reached by innovative ideas in the ten groups 

defined by type of surgical procedures, we partitioned the innovation cycle into eight 

stages corresponding to eight ordered categories, numbered in descending order from 

eight to one (Table S6). Each article can be classified according to the method and 

level of evidence presented in the corresponding medical work. In particular, the least 

mature stage of a generic innovation path is the theoretical description of an idea or its 

laboratory evaluation (stage eight). An idea can then be applied and assessed through 

an animal study (stage seven), and subsequently through a cadaveric study (stage six), 

and so on along all the stages described in Figure 4 in the main text. The initial idea, 

if successful, will end up being employed in a randomized control trial (stage one), 

which represents the final implementation stage at which an innovation can be 

regarded as having implications for medical practice. For each surgical specialty, we 
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quantified the average progress of innovative ideas towards their final implementation 

stage using what we have called the innovation index (main text). 

 
 

Stage Description 
1 Randomised controlled trial 
2 Non-randomised controlled trial 
3 Observational study with controls 
4 Observational study without controls 
5 First-in-human study 
6 Cadaveric study 
7 Animal study 
8 Description of idea / laboratory evaluation 
Table S6.  Description of stages into which articles can be classified according to level of evidence. 

 

The value of the innovation index based on the eight stages of innovation varies from 

zero to 2·718. In principle, the maximum value is reached by a surgical specialty that 

manages to monopolize the whole production of articles across all categories (from 

eight to one). In this limiting case, the values   for any category c are equal to 

one, and the innovation index corresponds to a harmonic series with eight terms, 

converging to 2·718. We then normalized the value of the Innovation Index by 

dividing it by the maximum that was observed across all surgical specialties, i.e., 

1·11. The normalized values will then range between zero and one. We then 

multiplied the normalized values by 100 to obtain percent values.  

 

To understand the logic behind the innovation index, let us consider the simple case in 

which we have only two surgical specialties. The first specialty (g=1) accounts for 

2/3 of the whole scientific production at each stage from eight to five, and for 1/3 of 

the whole production at each stage from four to one. The second group (g=2) 

accounts for 1/3 of the production at each stage from eight to five, and for 2/3 of the 

production at each stage from four to one (see Table S7 for details). The innovation 

c
g
c Pp
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index 𝑖!for the group 1 is then equal to 70, while the innovation index  𝑖! for group 2 

is equal to 100. This means that group 2 contributes more than group 1 to relatively 

mature stages of innovation in surgery. As a result, group 2 is more successful than 

group 1 in bringing innovations to the stage at which they have implications for 

medical practice and thus create value for patients. Table S8 illustrates how the 

contributions to each stage are combined into a final normalized value of the 

innovation index.  

  

Category c 8 7 6 5 4 3 2 1 
Weight 1/c 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1/1 
Contribution 
Group 1  

 2/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 

Contribution 
Group 2 

 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 

Table S7. Calculation of contributions to implementation stages in two illustrative examples. 

 
 
 
Group 1 !

!!∈! × !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
 = 1.12 (1.12/1.6) ×100 70 

Group 2 !

!!∈! × !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
+ !

!
× !

!
 = 1.6 (1.6/1.6) ×100 100 

Table S8. Calculation of innovation index in two illustrative examples. 

 

S2.3.3 National Inpatient Sample (NIS) count of robotic procedures in 2012 

The 7,296,968 hospital discharges included in the National Inpatient Sample (NIS) 

2012 data set have been extracted according to the ICD-9-CM procedure codes within 

the principal procedure field (PR1), as shown in Table S9.  

 
 
 
 
 
 
 
 
 
 
 
 

cc Pp 1

cc Pp 2
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Surgical procedure 
IC9 Codes for principal procedures 

Hysterectomy 
All 68, all 69, (exc, 695-699), all 653, all 654, all 655, all 656, all 664, all 665, all 667 

Prostatectomy 
603, 604, 605, 606,  

Nephrectomy 
All 553, all 554, all 555 

Pulmonary lobectomy 
All 32 

Cardiac surgery 
All 36, 35 and 37 

Colectomy 
All 48, all 457, 452 all 49, all 458 

Cystectomy 
576. all 577 

TORS 
8131, 8101, 066, all 27, all 28, all 29, all 30, 316 

Hepatectomy 
All 50 (excl., 505, 506, 509) 

Thyroidectomy 
060, 061, 062, 063, 064, 065, 066, 064 

Tables S9. IC9 codes for the selection of principal surgical procedures in NIS 2012.   

 

In addition to this filter, we also used the secondary procedure fields (from PR2 to 

PR15) to extract hospital discharges that relied upon one or more secondary robotic 

procedures identified through the codes reported in Table S10.  

 
 
 

IC9 Codes for secondary procedures 
Robotic assisted procedures 

1741, 1742, 1743, 1744, 1745, 1749 
Table S10. IC9 codes for the selection of robotic secondary procedures in NIS 2012.   

 

Table S11 shows the rank of the ten surgical robotic procedures performed in 2012 as 

recorded in the NIS data set.  

 
 

Surgical procedure Count of robotic procedures 

Hysterectomy 9,949 

Prostatectomy 8,027 

Nephrectomy 2,673 

Pulmonary Lobectomy 844 

Cardiac surgery 634 

Colectomy 615 

Cystectomy 419 

TORS 145 

Hepatectomy 55 

Thyroidectomy 25 
Table S11. Number of surgical procedures performed in 2012 according to the NIS data set. 
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S3. Robustness checks 

S3.1 Robustness of the ranking by size, structural depth, and structural width 

In order to assess the robustness of our analysis based on of the ranking of surgical 

specialties according to the median of the distributions of cascade size, structural 

depth and structural width, we quantified the Kendall rank correlation coefficients to 

measure the similarity between the median-based rankings and alternative rankings 

obtained using different descriptive statistics of the same distributions, including the 

75th percentile, the coefficient of variation (CV), the quartile coefficient of dispersion, 

the median absolute deviation (MAD) and its normalized version, the mean absolute 

difference (MD), and the relative mean absolute difference (RMD). Table S12 reports 

results based on such tests, and indicates that, across all alternative descriptive 

statistics, observations have a statistically significantly similar rank.  

 
	  

Descriptive statistic 
Kendall’s tau correlation 
coefficient (size) 

Kendall’s tau correlation 
coefficient (structural depth) 

Kendall’s tau correlation 
coefficient (structural width) 

75th percentile     0·719** (p=0·005)     0·778** (p=0·0009)     0·750** (p=0·004) 
CV    -0·045 (p=0·928)    -0·689** (p=0·005)    0·295 (p=0·279) 
Quartile coefficient of 
dispersion     0·629* (p=0·015)     0·644** (p=0·005)     -0·367 (p=0·241) 
MAD     1** (p=0·0001)     0·822** (p=0·004)     0·614* (p=0·019) 
normalised MAD     0·744** (p=0·005)     0·778** (p=0·0009)     -0·735** (p=0·005) 
MD     0·629* (p=0·015)     0·733** (p=0·002)     0·796** (p=0·002) 
RMD     0·089 (p=0·787)     0·689** (p=0·005)     -0·341** (p=0·207) 

Table S12.  Kendall’s tau correlation coefficients. Tests of independence between rankings of the ten 

surgical specialties obtained using the median of their distributions of cascade size, structural depth and 

width, on the one hand, and the rankings based on other selected descriptive statistics. *: rank 

correlation coefficient is statistically significant at the 0·05 level; **: rank correlation coefficient is 

statistically significant at the 0·01 level (2-tailed tests). 
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S3.2 Test of independence between distributions of level of evidence  

Figure 10 (panel f) in the main text reports our findings on the ranking by innovation 

index. We noted that the ranking comes as no surprise. For instance, robotic cardiac 

surgery is increasingly employed as it offers a minimally invasive approach for 

coronary revascularization and other procedures such as valve repair and closure of 

atrial septal defect through a closed chest.225,226 By contrast, TORS, though a 

potentially promising treatment modality for oropharyngeal cancer and obstructive 

sleep apnoea, for now lacks the high-level evidence needed to support its use against 

traditional treatments (chemoradiotherapy and continuous positive airways pressure, 

respectively). In addition, the majority of the robotic instruments (not originally 

designed for transoral surgery) limit the applicability of TORS to a select minority of 

patients that can tolerate transoral access.227,228  

 

For each surgical specialty, Table S13 reports the number of articles associated with 

level of evidence, the number of seed articles generating cascades, and the fraction of 

seed article with an associated level of evidence. The table suggests that not all cited 

articles across all specialties can be placed within the surgical innovation funnel.    
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Specialty Count of articles with  
level of evidence Count of cascades (i.e., seed articles) Coverage (%) 

Prostatectomy 623 835 72% 

Cardiac surgery 310 374 83% 

Nephrectomy 239 279 86% 

Hysterectomy 180 194 93% 

Cystectomy 116 149 78% 

Thyroidectomy 77 87 89% 

Colectomy 61 79 77% 

Pulmonary lobectomy 57 70 81% 

TORS 44 48 92% 

Hepatectomy 37 44 84% 

Table S13. Count of cascades associated with level of evidence across surgical specialties. 

 

Figure S1 shows the distributions of ordinal categories associated with 

implementation stages according to level of evidence for each surgical specialty. For 

each of the 45 possible pairs of surgical specialties, we performed a two-way Chi-

squared test of independence between the corresponding distributions of levels of 

evidence (Figure S1,a). In particular, the distributions of prostatectomy and cardiac 

surgery show a statistically significant difference with respect to all other procedures 

except one (thyroidectomy and hepatectomy, respectively). For robustness check, we 

also performed a Mann-Whitey U test of independence for each of the 45 pairs of 

specialties (Figure S1,b). The null hypothesis of lack of independence is rejected 

when p-value < 0·05. Both tests produce very similar results, with only few 

exceptions. 
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Figure S1. Frequency distributions of implementation stages and independence tests. Top panel: 

distributions of ordinal categories associated with implementation stages according to level of evidence 

for each surgical specialty. Bottom panel: a) two-way Chi-squared tests of independence and b) Mann-

Whitney U tests of independence between distributions of implementation-based categories. Green 

squares correspond to values of the test statistic that reject the null hypothesis of non-independence 

with p-value < 0·05. 
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S3.3 Spearman’s and Kendall’s tau tests for correlation between rankings 

 

We further calculated Spearman’s rank correlation coefficients (Table S14) and 

Kendall’s tau coefficients (Table S15) to compare rankings of surgical specialties by 

number of citations to seed articles, fraction of citations within one year, cascade size, 

structural depth, structural width, innovation index, and count of robotic procedures in 

NIS. Results suggest that the rankings according to cascade size and structural depth 

are statistically significantly similar to the ranking by innovation index. By contrast, 

the ranking of surgical specialties by number of citations does not correlate 

significantly with either of the other rankings. Notice that results from Kendall’s tau 

tests are consistent with the results reported in the main text.  

 
	  

	   Innovation index Count of procedures (NIS)	  
Citations   0·236 

(p = 0·511) 
 

Fraction of citations  -0·188 
(p = 0.603) 

 

Cascade size 0·758* 
(p = 0·011) 

 

Structural depth  0·782** 
(p = 0·008) 

 

Structural width 0·624 
(p = 0·054) 

 

Innovation index    0·673* 
(p = 0·033) 

Table S14. Spearman’s rank correlation coefficients testing the independence between various pairs of 

rankings of surgical specialties.  *: p-value < 0·05; **: p-value <0·01. 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   194	  

 

	   Innovation index Count of procedures (NIS)	  
Citations   0·2 

(p = 0·421) 
 

Fraction of citations  -0·156 
(p = 0·531) 

 

Cascade size 0·556* 
(p = 0·025) 

 

Structural depth  0·511* 
(p = 0·04) 

 

Structural width 0·378 
(p = 0·128) 

 

Innovation index    0·511* 
(p = 0·04) 

Table S15. Kendall’s tau correlation coefficients testing the independence between various pairs of 

rankings of surgical specialties.  *: p-value < 0·05; **: p-value <0·01. 

 

Notice that the ranking of specialties by our measure of innovation index was found 

to closely match the one based on the NIS data set. This comes as no surprise. For 

example, robotic prostatectomy has long been the commonest approach for prostate 

cancer in the United States but increasingly also in Europe supported by level 1 

evidence of superiority over traditional approaches.229 By contrast, robotic 

thyroidectomy is a procedure originally developed in the Far East for cultural reasons 

with a remarkably poor uptake in the Western world.82  
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Appendix 2 

 

S.1 Data 

Drawing on the Web of Science (WOS) database, we searched for all publications 

concerning robotic surgery according to the following search query: 

 

- Topic: “robotic OR robotic OR robot assisted OR robotic assisted OR 

robotically assisted OR robot-assisted OR robotic-assisted OR robotically-

assisted”; 

- Research Area: “Surgery”; 

- Document Types: “Article”. 

 

The search was performed on the 17th of January 2017, and produced 3,889 

publications (peer-reviewed articles) published between July 1988 and January 2017. 

Figure S29 shows the distribution of the retrieved publications across the years of 

retrieved. 

 

Of the 3,889 articles collected, 23 did not specify the affiliations of the co-authors. 

Thus, we focused on the remaining 3,866 articles with specified affiliations of co-

authors. Based on these 3,866 articles, a process of manual disambiguation of name 

variants of organisations was performed. Out of 2,590 name variants, we filtered out 

1,700 unique names. To this end, each name variant was searched for on the WOS 

“Organisations - Enhanced List” tool with a view to identifying the preferred name 

associated with the corresponding organization. If such name was found, then it was 

used as a unique name. In particular, 816 preferred names were found corresponding 
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to 1,485 name variants. Not all organizations in the WOS database were included in 

this list by the WOS team. For 1,105 name variants we could not find a corresponding 

preferred name using the above mentioned tool. A manual search on Google search 

was then performed that took into account the associated geographical location 

(country and city) of the organization and, when necessary, also the affiliated authors’ 

names. This resulted in the identification of additional 884 unique names of 

organizations. Thus, in total we obtained 1,700 unique organizations.  

 

Moreover, these 1,700 organisations were classified into 642 academic institutions, 11 

academic systems, 863 health providers, 99 enterprises, 53 research institutes, 22 

governmental entities, 8 research foundations, and 2 research working groups. These 

institutional categories were produced partly based on the WOS Organisation Type 

classification produced through the InCites© (Clarivate Analytics, London, UK) data 

intelligence tool, and partly manually (mainly for enterprises and health providers that 

were not included in InCites).  

 

The 1,700 organisations were nested within 62 countries, and within 6 geographical 

regions. These regions were based on the standard international allocation of 

countries into continents, with the exception of Russia and Middle Eastern countries 

that were classified as transcontinental countries. In particular, Russia was classified 

as belonging to Europe given the geographical proximity of its capital to the European 

borders. 
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Figure S29. Time distribution of publications. 

	  
For each of the top 20 countries ranked by number of publications, Table S1 shows 

the number of organisations contributing to research. 

 

Country	   Number	  of	  
publications	  

Number	  of	  
organisations	  

USA	   1846	   520	  
Germany	   359	   137	  
South	  Korea	   352	   58	  
Italy	   280	   127	  
Japan	   224	   112	  
France	   204	   103	  
China	   179	   71	  
United	  Kingdom	   167	   68	  
Canada	   159	   33	  
Netherlands	   88	   32	  
Austria	   86	   20	  
Turkey	   79	   49	  
Belgium	   61	   17	  
Spain	   46	   41	  
Switzerland	   40	   14	  
Australia	   35	   31	  
Brazil	   34	   26	  
Taiwan	   34	   22	  
Romania	   30	   17	  
India	   27	   18	  

Table S5. Top 20 countries ranked by number of published articles. 
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S.2 The network 

 

We built up the global collaboration network (see Figure 12 in the main manuscript) 

among the 1,700 organisations that carried out research on robotic surgery. The nodes 

of the network are the organisations, and links refer to collaborations between 

organisations. Specifically, a link exists between any two organisations when one or 

more scholars affiliated with one organisation co-authored at least one article with 

one or more scholars affiliated with the other organisation. Out of the 1,700 

organisations, 1,543 were connected through at least one collaboration. The largest 

connected component includes 1,334 organizations, and in total the network 

comprises 6,000 collaboration links. 

 

To construct the network, we first define 𝑨 as the undirected and binary bipartite 

authorship matrix defining connections between each organisation 𝑜𝑟𝑔  and each 

publication 𝑝 such that element 𝑎!,!"# = 1 if and only if organisation 𝑜𝑟𝑔 contributed 

to article 𝑎, and 𝑎!,!"# = 0 otherwise (see Figure S2.a).1 We then define 𝑪 as the 

undirected and weighted projected one-mode collaboration matrix, where each 

element 𝑐!" > 0 if and only if organisation 𝑖 collaborated with the organisation 𝑗. That 

is, 𝑐!" > 0 when organisation i and organisation j co-authored at least one publication 

(see Figure S2.b).  

 

The weight of each collaborative tie between any two organisations is measured 

according to the method proposed by Newman (2001).2 In particular, the total weight 

𝑐!" of the collaborative tie between two organisations i and j is assumed to be equal to 
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the sum of the strengths 𝑤!" contributed by each of the articles co-authored by the two 

organisations, where strength 𝑤!" is defined as: 

	  

𝑤!" =
1

𝑛! − 1
,	  

	  
	  
and 𝑛! is the number of organisations appearing in the byline of article a. In other 

words, the total weight 𝑐!" of the collaborative tie between organisations i and j is (i) 

proportional to the number of articles these organisations co-authored; and (ii) 

inversely proportional to the number of organisation involved in each article (see 

Figure S2,d). Note that all articles published by one single organization were 

excluded from the above measure as they did not contribute to the co-authorship 

network.  

	  

	  
Figure S2. Authorship network, collaboration network, full and fractional counting method for 

computing weights of collaborative ties. a) The bipartite network connecting organisations to 
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publications; b) The weighted undirected one-mode collaboration network among organisations; c) 

Weights of links and node strength (i.e., the sum of the weights of the links incident upon the node) 

computed according the full counting method; d) Weights of links and node strength computed 

according to the fractional counting method (Newman, 2001).2 Notice that in the case of fractional 

counting, node strength is equal to the number of articles the corresponding organisation published.  

	  
	  
S.3 Measures 

 

In this Section, we provide details on various dependent and independent measures 

used in the analysis. These measures include: innovativeness; research impact; the 

clustering coefficient; efficiency; closeness centrality; geographical dispersion; and 

strength of industrial collaboration. 

 

S.3.1 The innovation index 

 

We classified each article in terms of its level of evidence following the procedure 

proposed by Garas et al. (2017).3 Each articles was associated with one out of 8 

categories corresponding to distinct surgical innovation stages as shown in Table S2. 

	  
Surgical	  Innovation	  
Stage	  

Description	  

1	   Randomised	  controlled	  trial	  
2	   Non-‐randomised	  controlled	  trial	  
3	   Observational	  study	  with	  controls	  
4	   Observational	  study	  without	  controls	  
5	   First-‐in-‐human	  study	  
6	   Cadaveric	  study	  
7	   Animal	  study	  
8	   Description	  of	  idea	  /	  laboratory	  evaluation	  

Table S2.  Description of surgical innovation stages with which articles can be associated according to 

their level of evidence. 

 

We could assign level of evidence to 3,389 articles. Figure S.3 shows the temporal 

distributions of these articles in each evidence-based category.  
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Figure S3. Number of articles per level of evidence over time. 

 
We then computed the innovation index following the definition given in Garas et al. 

(2017).3 For each organization org, the innovation index 𝑖𝑖!"# can be defined as 

	  

𝑖𝑖!"# =

1
𝑐!∈! ×𝑝!

!"#

𝑃!

max
!"#∈!

1
𝑐!∈! ×𝑝!

!"#

𝑃!

  ×100,	  

	  

where 𝑐 ∈ 𝑆 = [1,… ,8] is an integer value labelling the ordinal category associated 

with the implementation stage according to level of evidence, 𝑝!
!"#  is the count of 

publications of organisation org associated with category 𝑐, and 𝑃! =    𝑝!
!"#

!"#∈!  is 

the total number of publications associated with category 𝑐 across all organisations in 

the data set (i.e., in the set G). Figure S4 shows the ranking of countries according to 

the average of innovation indices of all the organisations within their borders. The 

figure also highlights the most innovative organisations within and between countries. 
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Figure S4. Ranking of countries and organisations according to normalized innovation index. To 

obtain the normalized innovation index, we divided each organisation’s innovation index by the 

maximum value observed in the data set. Countries have been ranked according to the sum of 

organisations’ normalised innovation index. Grey shaded areas correspond to distances between lower 

and upper quartiles (interquartile range). Darker shaded areas denote distances between lower quartile 

and median. Whiskers correspond to values within 1.5 times the interquartile range. To obtain the 

normalised innovation index, we divided each organisation’s innovation index by the maximum value 

observed in the data set. 

	  
S.3.2 Research impact 

 

For each organisation, we measured its academic performance using the sum 𝑠𝑛𝑐!"# 

of the normalised citations received by all articles published by the organisation 

across the years: 
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𝑠𝑛𝑐!"# = 𝑛𝑐!!"#,! ,
!!

	  

	  
where 𝑛𝑐!!"#,! refers to the normalised citations received by article 𝑎!"#,! published 

by (authors affiliated with) organisation org in year y. To obtain normalised citations, 

the citation count for each publication in a given year was divided by the average 

number of citations obtained by all articles published in the same year: 

	  

𝑛𝑐!!"#,! =
𝑐𝑖𝑡!!"#,!
< 𝑐𝑖𝑡!,! >

,	  

	  
	  
where the average < 𝑐𝑖𝑡!,! > was computed across all articles published by all 

organisations in year y. 

	  
	  
S.3.3 The local clustering coefficient 

 

Network analysis provides a set of measures for quantifying a number of structural 

properties at different levels of a system.1 For example, measures can be calculated at 

a node’s level to detect its topological position (e.g., broker between otherwise 

disconnected partners) in the ego-centered network (i.e., the network including 

connections between the node and its partners as well as connections between these 

partners), or in the whole network (e.g., how close the node is to all other others in the 

network). Network analysis can therefore provide valuable tools for uncovering which 

nodes are central to the innovation process (‘knowledge catalysts’), which have a 

more peripheral role, and which act as connectors between otherwise unconnected 

groups (‘knowledge brokers’). By constructing and examining each node’s ego-

centered network, we aim to detect the extent to which a node’s neighbours are also 
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connected with each other, and in so doing we engage with current debates on social 

capital and the relative benefits of closed versus open social structures.1  

 

Using the weighted network as defined above, we computed the local clustering 

coefficient of each organisation, which measures the extent to which the 

organisation’s ego-centered network is a closed collaborative structure.1-5 Formally, 

the local clustering coefficient 𝑐𝑐!"#  of organisation 𝑜𝑟𝑔  in a binary network is 

defined as the ratio between the number of actual triangles 𝑡!"#  containing the 

organisation 𝑜𝑟𝑔  and its 𝑘!"# neighbours, and the maximum possible number of such 

triangles, 𝑡!"#!"# = 𝑘!"#(𝑘!"# − 1)/2: 

	  

𝑐𝑐!"! =
!×!!"#

!!"#(!!"#!!)
  for  𝑘!"# ≥ 2  

0                                          for  𝑘!"# = 0,1
	  .	  

	  
	  
In our study, we computed the clustering coefficient only for organisations with 

𝑘!"# ≠ 0, 1  (i.e., 1,203 organizations). Moreover, we computed the generalised 

clustering coefficient to account for the (fractional) weight of links according to the 

definition proposed in Opsahl and Panzarasa (2009).4 In particular, we used the 

arithmetic mean as a method to obtain the weights of triangles and triplets, 

respectively in the numerator and denominator of the generalized clustering 

coefficient. 

	  
	  
S.3.5 Efficiency 

 

To measure an organisation’s opportunities of brokerage, we also computed 

efficiency, namely the degree to which the organisation’s ego-centered network is 
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non-redundant.6 Efficiency thus captures the extent to which an organisation’s ego-

centered network is an open structure. To measure efficiency, we first computed 

effective size, a measure originally introduced by Burt (1992) to capture the extent to 

which each of the first neighbours of a node is redundant with respect to the other 

neighbours. Following Latora et al. (2013),5 an organisation org’s effective size, 

𝑒𝑠!"#, can be defined as  

	  
𝑒𝑠𝑜𝑟𝑔 = 𝑘𝑜𝑟𝑔 − 𝑘𝑜𝑟𝑔 − 1 𝑐𝑐𝑜𝑟𝑔,	  

	  
	  
where 𝑘!"# is the degree of organisation org (i.e., the number of organisations with 

which org collaborated), and 𝑐𝑐!"# is the local binary local clustering coefficient (i.e., 

the coefficient presented in S.3.3 computed using the unweighted network).  

 

The efficiency 𝑒𝑓𝑓!"# of organisation org (i.e., the normalized effective size) can now 

be computed as the ratio between the organisation’s effective size and degree:  

  

𝑒𝑓𝑓!"# =
𝑒𝑠!"#
𝑘!"#

= 1−
𝑘!"# − 1
𝑘!"#

𝑐𝑐!"#          𝑘!"# > 0

0                                                                                                            𝑘!"# = 0
	  

	  
	  
Notice that, as with the local clustering coefficient (Section S.3.3), efficiency was 

computed only for organisations with 𝑘!"# ≠ 0, 1 (i.e., 1,203 organisations).  

 

S.3.4 Closeness centrality 

 

Drawing on the weighed network defined above, we computed the closeness 

centrality of each organisation. The closeness centrality of an organisation is a 
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function of the inverse of the shortest distances separating the organisation from each 

of all other organisations in the network (i.e., the smallest number of links separating 

the organisation from each of the others).1 Formally, the closeness centrality lorg of a 

given organization org is defined as: 

	  

𝑙!"# =
1

𝑛 − 1
1

𝑑!"#,!!(!!"#)

,	  

	  
	  
where 𝑛 is the total number of organisations in the data set, and 𝑑!"#,! is the length of 

the shortest path between organisation 𝑜𝑟𝑔 and organisation 𝑗. In other words, we 

measured the closeness centrality of organisation org as the mean of the inverse 

distances from org to all other nodes in the network. 

 

Once again, we used the generalised version of closeness centrality for undirected 

networks to account for the (fractional) weights of links according to the definition 

proposed in Opsahl at al. (2010).7 In particular, we set the alpha tuning parameter in 

the generalised measure equal to one (see Equation 8 in Opsahl et al. (2010)). In this 

case, the Dijkstra shortest paths were used, and the identification procedure of these 

paths relied simply on tie weights and disregarded the number of intermediary nodes 

along the paths.  

	  
S.3.5 Geographical entropy 

 

In addition to the network-based measures described above, for each organisation we 

measured: (i) the diversity of the geographical locations of collaborators; and (ii) the 

strength of collaboration with industrial partners. 
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To measure the geographical diversity of collaborators, we computed geographical 

entropy. To this end, let us define 𝛤!"#  as the set of countries in which the 

collaborating organisations of a given organisation org are located, i.e., 𝛤!"# =

𝛾!  , 𝛾!  ,… , 𝛾!   . Formally, the geographical entropy of organisation org can be 

defined as follows: 

	  
𝜀!"# = − 𝑝!"#,!! 𝑙𝑜𝑔 𝑝!"#,!!

!!!!!"#

,	  

	  
	  
where 𝑝!"#,!!  is the fraction of organisation org’s collaborative effort towards 

organisations located in country 𝛾!  (i.e., the ratio between the sum c!"#,!!  of the 

weights of links between org and all organisations in country 𝛾!  and the sum 

c!"#,!!!!  ∈!!"#  of the weights of links between org and all organisations in Γ!"#). 

Notice that each weight c!"#,!!  is measured once again according to the method 

proposed by Newman (2001) (see Section S.2). 

 

Given the set 𝛤  of countries in the data set and the norm 𝛤  of such set, an 

organisation’s geographical entropy can range from zero (when all international 

collaborators are located in the same country) to log ( 𝛤 − 1)  (when the 

international collaborators are uniformly distributed across 𝛤 − 1 countries, i.e., all 

countries except the organisation’s own). Similarly, given the set 𝛤!"# of countries 

with which the organisation org collaborates, entropy is maximised when the 

organisation equally distributes its collaborative efforts across all countries in Γ!"#. 

That is, for each country 𝛾!  , 𝛾!  ,… , 𝛾!   ∈ Γ!"#, 𝜀!"# is maximised when each fraction 
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of collaborative effort is equal to 𝑝!"#,!! =
!

!!"#
, where Γ!"#  is the norm of the set 

Γ!"#. 

 

Thus, geographical entropy enables us to assess organisations beyond the mere count 

of international collaborators, and to distinguish between organisations that, while 

having the same number of international collaborators, differ in terms of their 

geographical dispersion. This is important as some organisations may have a large 

number of international collaborators, yet all confined within the same geographical 

boundaries, whereas others may have few collaborators that nonetheless are widely 

geographically dispersed.  

 

	  

	  
Figure S30. Representation of geographical dispersion. a) An organisation org can collaborate with 

domestic or international organisations, 𝐷!"#  and 𝛤!"# , respectively. Each of the international 

organisations can, in turn, be associated to the foreign country 𝛾!  , 𝛾!  ,… , 𝛾!   ∈ 𝛤!"# in which it is 

located. The size of each cell 𝛾! is proportional to the effort 𝑐!!!devoted by organisation org towards 

country 𝛾! (i.e., proportional to the sum of weights of the links between org and all organisations in 

country 𝛾!). b) The distribution of organisation org’s efforts across foreign countries. The value of each 

𝑝!"#,!! is equal to the ratio between 𝑐!"#,!!and the sum of org’s efforts towards all countries in 𝛤!"#, 

i.e., 𝑐!"#,!!!!  ∈!!"# . Based on the distribution of 𝑝!"#,!!, it is possible to compute the geographical 

entropy 𝜀!"#.  
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S.3.6 Industrial collaboration 

 

To assess the association between research impact and innovation on the one hand, 

and collaborative links with industry on the other, for each organisation we measured 

the strength of industrial collaborations. Indeed collaboration with industry represents 

a potentially relevant determinant of research performance that may not be captured 

by more traditional network metrics.8  

 

The strength of an organisation’s industrial collaborations was computed as the sum 

of the organisation’s collaborative efforts towards industrial partners. Formally, the 

strength of industrial collaborations of a given organisation org is defined as: 

	  

𝑖𝑐!"# = 𝑐!"#,! ,
!!!"#,!∈!

	  

	  

where 𝑐!"#,!   denotes the weight of the collaborative link between organisation org 

and organisation j, and I represents the set of all organisations classified as “Industry”. 

Notice that each weight 𝑐!"#,!  is measured once again according to the method 

proposed by Newman (2001) (see Section S.2). 

 

S.3.7 Other control variables  

 

We also controlled for a measure of volume, i.e., the ‘scholarly output’ in WOS, here 

referred to as ‘number of articles in WOS’. This was measured through the number of 

all articles published by each organization that the InCites© intelligence tool could 
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retrieve in the WOS database. Note that this control variable refers to each 

organisation’s overall scholarly output in WOS beyond the specific field of robotic 

surgery. This, of course, should not be confused with the number of publications in 

our data set that are linked to any given organisation. Moreover, WOS does not track 

all the organisations we were able to detect in our set of publications (within robotic 

surgery). Out of the 1,700 organisations in our data set, only 814 could be associated 

with a total scholarly output in WOS.  

 

S.4 Statistical analysis 

 

Maximum-likelihood estimates of two hierarchical three-level random-intercept 

models were computed in which organisations were nested within countries, in turn 

nested within geographical regions. A random-intercept structure was combined with 

heteroskedastic level-1 residuals by letting the variances of these residuals be a 

function of the organisation’s institutional type. For organisation org, country 𝛾, and 

geographical region r, we estimated the following three-level linear random-intercept 

models: 

 
 
𝑠𝑛𝑐!"#,!,! = 𝛽! + 𝛽!𝑐𝑐!"#,!,! + 𝛽!𝑙!"#,!,! +     𝛽!𝜀!"#,!,! + 𝛽!𝑖𝑐!"#,!,! + 𝛽!𝑣!"#,!,!

+ 𝑑!,!"#,!,!𝛽!

!"

!!!

+ 𝜁!,!
(!) + 𝜁!

(!) + 𝜀!"#,!,! 

 
and 
 

𝑖𝑖!"#,!,! = 𝛽! + 𝛽!𝑐𝑐!"#,!,! + 𝛽!𝑙!"#,!,! +     𝛽!𝜀!"#,!,! + 𝛽!𝑖𝑐!"#,!,! + 𝛽!𝑣!"#,!,!

+ 𝑑!,!"#,!,!𝛽!

!"

!!!

+ 𝜁!,!
(!) + 𝜁!

(!) + 𝜀!"#,!,! , 
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where 𝑐𝑐!"#,!,! , 𝑙!"#,!,! , 𝜀!"#,!,! , 𝑖𝑐!"#,!,! , and  𝑣!"#,!,! are level-1 covariates (as defined 

in Section S.3) for organisation org in country 𝛾 and region r, 𝑣!"#,!,! is a level-1 

covariate measuring the number of all articles published by organisation org in 

country 𝛾 and region r and recorded in the WOS database, 𝑑!,!"#,!,! is the dummy 

variable for the k-th institutional type of organisation org in country 𝛾 and region r, 𝛽! 

to 𝛽!" are fixed parameters, 𝜁!,!
(!) is the country-level (i.e., level-2) random intercept, 

𝜁!
(!) is the region-level (i.e., level-3) random intercept, and 𝜀!"#,!,! is the organisation-

level (i.e., level-1) error term.8  

 

We let all observed covariates for all organisations in region r be denoted by the 

matrix 𝑿𝒓 . It was assumed that the region-level random intercept 𝜁!
(!)has zero 

expectation and variance 𝜓(!),  given the covariates 𝑿𝒓. Similarly, we assumed that the 

country-level random intercept 𝜁!,!
(!) has zero expectation and variance 𝜓(!),  given the 

random intercept 𝜁!
(!) and the covariates 𝑿𝒓. That is, we assumed that: (i) there is zero 

correlation between covariates and the random intercept at the region level (i.e., level-

3 exogeneity); there is zero correlation between covariates and the random intercept at 

the country level (i.e., level-2 exogeneity); there is zero correlation between random 

intercepts 𝜁!
(!)and 𝜁!,!

(!)  across regions and countries; the variance of the random 

intercept at the region level is homoskedastic given the covariates; and (iv) the 

variance of the random intercept at the country level is homoskedastic given the 

covariates and the region-level random intercept.  

 
Moreover, it was assumed that the level-1 error term 𝜀!"#,!,! has zero expectation, 

given the covariates 𝑿𝒓 and the random intercepts 𝜁!
(!)  and 𝜁!,!

(!). That is, we assumed 
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that there is zero correlation between covariates and level-1 residuals (i.e., level-1 

exogeneity), and zero correlation between level-1 residuals and both random 

intercepts 𝜁!
(!)  and 𝜁!,!

(!) . However, unlike the two random intercepts, the level-1 

residuals were not assumed to be homoskedastic. To this end, we combined a three-

level random-intercept structure with heteroskedastic level-1 residuals by letting the 

variances 𝜗(!)of these residuals be a function of the organisation’s institutional type 

𝑡!"#,!,!, given the covariates and level-3 and level-2 random intercepts. That is, the 

conditional variance of the responses given the covariates and random intercepts, or 

the conditional variance of the total residual, depends on the value of the covariate 

𝑡!"#,!,!, and the total residual is therefore heteroskedastic. Finally, the random effects 

at each level were assumed to be mutually independent and independent of the level-1 

residual error term.  

	  
	  
S.5 Results  

 

For the sake of completeness, Tables S3-S8 report estimates for all parameters, 

including the remaining fixed effects (i.e., intercept and institutional types) as well as 

the estimated random-effect parameters (i.e., the standard deviations of the level-3 

and level-2 random intercepts and of the level-1error term, 𝜓(!)), 𝜓(!), 𝜗(!) 

respectively). To check for robustness, we also estimated a number of additional 

three-level random-intercept models. First, we replaced the local clustering coefficient 

with efficiency, a measure that directly captures the extent to which an organisation 

collaborates with non-redundant partners that are otherwise disconnected with each 

other. Second, we introduced a level-1 interaction term between (standardised) 

geographical entropy and the local clustering coefficient. 
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S.5.1 Estimates from mixed-effects regression models of research impact  

 

Table S3 reports the full range of estimates from the hierarchical three-level random-

intercept model of research impact including the local clustering coefficient as a 

covariate (as in the main manuscript).  

	  
	  
	  
Random-‐effects	  
parameters	  

Estimate	   Std.	  Err.	   [95%	  Conf.	  Interval]	  

	   	   	   	   	  
	   	   	   	   	  
Geographical	   region	  
( 𝝍(𝟑))	   1.754686	   0.986096	   0.583233	   5.27906	  
	   	   	   	   	  
	   	   	   	   	  
Country	  ( 𝝍(𝟐))	   1.645659	   1.159483	   0.413626	   6.54744	  
	   	   	   	   	  
Level-‐1	   residual	   by	  
type	   of	   organisation	  
( 𝝑(𝒕))	  

	   	   	   	  

Academic	   20.37447	   0.706987	   19.03487	   21.80834	  
Academic	  system	   5.749711	   1.93462	   2.973309	   11.11865	  
Industry	   3.104733	   0.894139	   1.765569	   5.459635	  
Government	   5.184769	   1.134586	   3.376451	   7.961564	  
Health	   8.482241	   0.567122	   7.440451	   9.669898	  
Research	  Institute	   13.80572	   1.863823	   10.59604	   17.98764	  
Number	  of	  observations	  =	  639	  
Log	  pseudolikelihood	  =	  2678.401	  
Wald	  𝜒!(10)	  =	  458.82	  
Log	  likelihood	  =	  -‐2678.401	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Table S3. Maximum-likelihood estimates from three-level random-intercept linear models of 

normalized citations with the local clustering coefficient as covariate.  

	  
An increase by one standard deviation in (normalised) closeness centrality was 

associated with an expected increase of 6.0782 units in normalized. After controlling 

for the other covariates, a one-unit increase in geographical entropy was associated 
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with an expected increase in normalised citations by 10.5599 units. Estimates 

suggested that there was no significant difference in (normalized) citation count 

between two organisations that differed in number of publications, after controlling 

for the other covariates.  

 

Table S4 reports the full range of estimates from the hierarchical three-level random-

intercept model of research impact in which the local clustering coefficient has been 

replaced by efficiency. Results are in qualitative agreement with the ones reported in 

the main manuscript. A surge in opportunities of knowledge brokerage are associated 

with an expected increase in research impact, after controlling for the other 

covariates; yet the association is not statistically significant. 

	  
	  
	  
Random-‐effects	  
parameters	  

Estimate	   Std.	  Err.	   [95%	  Conf.	  Interval]	  

Geographical	   region	  
( 𝝍(𝟑))	   1.809977	   1.022269	   0.598297	   5.475565	  
	   	   	   	   	  
	   	   	   	   	  
Country	  ( 𝝍(𝟐))	   1.774071	   1.100912	   0.525717	   5.986737	  
	   	   	   	   	  
Level-‐1	   residual	   by	  
type	   of	   organisation	  
( 𝝑(𝒕))	  

	   	   	   	  

Academic	   20.33417	   0.702829	   19.00227	   21.75942	  
Academic	  system	   5.733436	   1.915343	   2.978914	   11.03499	  
Industry	   3.270703	   0.934917	   1.867792	   5.727348	  
Government	   5.072872	   1.117939	   3.29359	   7.813366	  
Health	   8.503419	   0.571205	   7.454445	   9.700002	  
Research	  Institute	   13.7129	   1.856314	   10.51725	   17.87955	  
Number	  of	  observations	  =	  639	  
Log	  pseudolikelihood	  =	  -‐2678.2335	  
Wald	  𝜒!(10)	  =	  458.98	  
Log	  likelihood	  =	  -‐2678.2335	  
Table S4. Maximum-likelihood estimates from three-level random-intercept linear models of 

normalized citations with efficiency as covariate.  



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   217	  

	  
	  
S.5.2 Estimates from mixed-effects regression models of innovation  

 

Table S5 reports the full range of estimates from the hierarchical three-level random-

intercept model of innovation including the local clustering coefficient as a covariate.  

	  
Random-‐effects	  
parameters	  

Estimate	   Std.	  Err.	   [95%	  Conf.	  Interval]	  

Geographical	   region	  
( 𝝍(𝟑))	   5.95E-‐09	   5.35E-‐08	   1.30E-‐16	   0.272217	  
	   	   	   	   	  
	   	   	   	   	  
Country	  ( 𝝍(𝟐))	   2.97E-‐09	   1.08E-‐08	   2.39E-‐12	   3.69E-‐06	  
	   	   	   	   	  
Level-‐1	   residual	   by	  
type	   of	   organisation	  
( 𝝑(𝒕))	  

	   	   	   	  

Academic	   1.357163	   0.046495	   1.269027	   1.45142	  
Academic	  system	   2.729741	   0.865797	   1.466034	   5.082749	  
Industry	   0.105642	   0.028544	   0.062208	   0.179403	  
Government	   0.142781	   0.035741	   0.087417	   0.233209	  
Health	   0.519942	   0.033448	   0.45835	   0.58981	  
Research	  Institute	   0.665177	   0.090613	   0.50931	   0.868743	  
Number	  of	  observations	  =	  639	  
Log	  pseudolikelihood	  =	  -‐914.73492	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Wald	  𝜒!(10)	  =	  181.68	  
Log	  likelihood	  =	  -‐914.73492	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Table S5. Maximum-likelihood estimates from three-level random-intercept linear models of 

innovation with the local clustering coefficient as covariate.  

	  
As clustering increases by one standard deviation, an organisation’s innovation value 

decreases by 0.0820 units. An increase by one standard deviation in (normalised) 

closeness centrality was associated with an expected increase of 0.2166 units in 

innovation value. After controlling for the other covariates, a one-unit increase in 

geographical entropy was associated with an expected increase in innovation value by 

0.1629 units. Estimates suggested that there was no significant difference in 
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innovation value between two organisations that differed in number of publications, 

after controlling for the other covariates.  

 

Table S6 reports the full range of estimates from the hierarchical three-level random-

intercept model of innovation in which the local clustering coefficient has been 

replaced by efficiency. Results are in qualitative agreement with the ones reported in 

the main text. A surge in opportunities of knowledge brokerage are associated with an 

expected increase in innovation value, after controlling for the other covariates. 

Moreover, unlike what was found in the case of research impact, the association 

between brokerage and innovation is now statistically significant. 

	  
	  
Random-‐effects	  
parameters	  

Estimate	   Std.	  Err.	   [95%	  Conf.	  Interval]	  

Geographical	   region	  
( 𝝍(𝟑))	   3.97E-‐11	   4.13E-‐10	   5.66E-‐20	   0.027876	  
	   	   	   	   	  
	   	   	   	   	  
Country	  ( 𝝍(𝟐))	   0.150211	   0.063125	   0.065916	   0.342303	  
	   	   	   	   	  
Level-‐1	   residual	   by	  
type	   of	   organisation	  
( 𝝑(𝒕))	  

	   	   	   	  

Academic	   1.330701	   0.046708	   1.242232	   1.425469	  
Academic	  system	   2.712254	   0.858253	   1.458747	   5.042903	  
Industry	   0.098093	   0.034607	   0.049129	   0.195857	  
Government	   0.146177	   0.040164	   0.08531	   0.250469	  
Health	   0.515374	   0.034133	   0.452634	   0.58681	  
Research	  Institute	   0.643473	   0.087905	   0.492319	   0.841033	  
Number	  of	  observations	  =	  639	  
Log	  pseudolikelihood	  =	  -‐912.65477	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Wald	  𝜒!(10)	  =	  174.24	  
Log	  likelihood	  =	  -‐912.65477	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Table S6. Maximum-likelihood estimates from three-level random-intercept linear models of 

innovation with the efficiency as covariate. 
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S.5.3 Estimates from mixed-effects regression models with interaction effects 

 

To check for robustness, we further estimated a number of additional three-level 

random-intercept models. In these models we introduced a level-1 interaction term 

between (standardised) geographical entropy and the clustering coefficient. Tables S7 

and S8 report estimates from such models of research impact and innovation, 

respectively. Once again, results (and especially the main effects of the interacted 

covariates) remained qualitatively similar to the ones reported in the main text. In 

addition, the parameter estimate for the interaction term was found to be negative and 

statistically significant in both models. That is, the expected negative effects on an 

organisation’s research impact and innovation of an increase by one standard 

deviation in clustering are amplified as the geographical diversity of an organisation’s 

collaboration network also increases by one standard deviation, after controlling for 

the other covariates. In other words, these results suggest that the benefits of open 

structures can be further amplified when an organisation’s collaborators are spatially 

distributed across many and different countries.  
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Random-‐effects	  
parameters	  

Estimate	   Std.	  Err.	   [95%	  Conf.	  Interval]	  

Geographical	   region	  
( 𝝍(𝟑))	   1.69721	   1.125712	   0.462549	   6.227501	  
	   	   	   	   	  
	   	   	   	   	  
Country	  ( 𝝍(𝟐))	   2.409696	   0.939308	   1.122434	   5.173253	  
	   	   	   	   	  
Level-‐1	   residual	   by	  
type	   of	   organisation	  
( 𝝑(𝒕))	  

	   	   	   	  

Academic	   19.66172	   0.676594	   18.37936	   21.03357	  
Academic	  system	   3.627777	   1.421989	   1.682647	   7.821469	  
Industry	   1.879379	   0.539752	   1.070414	   3.299718	  
Government	   4.666399	   1.045263	   3.008255	   7.238511	  
Health	   8.768805	   0.617094	   7.639028	   10.06567	  
Research	  Institute	   12.06206	   1.66891	   9.197057	   15.81954	  
Number	  of	  observations	  =	  639	  
Log	  pseudolikelihood	  =	  -‐2658.2566	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Wald	  𝜒!(10)	  =	  549.88	  
Log	  likelihood	  =	  -‐2658.2566	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Table S7. Maximum-likelihood estimates from three-level random-intercept linear models of research 

impact with interaction effects.  
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Random-‐effects	  
parameters	  

Estimate	   Std.	  Err.	   [95%	  Conf.	  Interval]	  

Geographical	   region	  
( 𝝍(𝟑))	   2.58E-‐09	   2.60E-‐08	   6.54E-‐18	   1.014793	  
	   	   	   	   	  
	   	   	   	   	  
Country	  ( 𝝍(𝟐))	   0.166526	   0.056729	   0.085411	   0.324676	  
	   	   	   	   	  
Level-‐1	   residual	   by	  
type	   of	   organisation	  
( 𝝑(𝒕))	  

	   	   	   	  

Academic	   1.308692	   0.04497	   1.223455	   1.399866	  
Academic	  system	   2.645774	   0.840066	   1.419992	   4.929691	  
Industry	   0.076094	   0.025267	   0.039693	   0.145878	  
Government	   0.118277	   0.034155	   0.067159	   0.208306	  
Health	   0.534018	   0.036643	   0.46682	   0.610891	  
Research	  Institute	   0.58007	   0.080519	   0.441902	   0.761438	  
Number	  of	  observations	  =	  639	  
Log	  pseudolikelihood	  =	  -‐903.79064	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Wald	  𝜒!(10)	  =	  203.47	  
Log	  likelihood	  =	  -‐903.79064	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Table S8. Maximum-likelihood estimates from three-level random-intercept linear models of 

innovation with interaction effects.  
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Appendix 3 

 

S.1 Data 

Drawing on the Web of Science® (WOS) database, we searched for all publications 

concerning robotic surgery according to the following search query: 

 

- Topic: “robotic OR robotic OR robot assisted OR robotic assisted OR 

robotically assisted OR robot-assisted OR robotic-assisted OR robotically-

assisted”; 

- Research Area: “Surgery”; 

- Document Types: “Article”. 

 

The search was performed on the 17th of January 2017, and produced 3,889 

publications (peer-reviewed articles) published between July 1988 and January 2017. 

Figure S31 shows the distribution of the retrieved publications across the years. 

 

Based on these 3,889 articles, a process of manual disambiguation of name variants of 

organisations was performed. Out of 2,590 name variants, we filtered out 1,700 

unique names. To this end, each name variant was searched for using the WOS® 

“Organizations - Enhanced List” tool with a view to identifying the preferred name 

associated with the corresponding organisation. If such name was found, then it was 

used as a unique name. In particular, 816 preferred names were found corresponding 

to 1,485 name variants. Not all organisations in the WOS® database were included in 

this list by the WOS® team. For 1,105 name variants we could not find a 

corresponding preferred name using the above-mentioned tool. A manual search on 
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Google search was then performed that took into account the associated geographical 

location (country and city) of the organisation and, when necessary, also the affiliated 

authors’ names. This resulted in the identification of an additional 884 unique names 

of organisations. Thus, in total we obtained 1,700 unique organisations.  

 

These 1,700 organisations were nested within 61 countries (China and Hong Kong 

were aggregated into one country), and within 7 geographical regions. These regions 

were based on the standard international allocation of countries into continents, with 

the exception of Russia and Middle Eastern countries that were classified as 

transcontinental countries. In particular, Russia was classified as belonging to Europe 

given the geographical proximity of its capital to the European borders. 

 

 
Figure S31. Time distribution of publications 

 
Of the 3,889 articles collected, 23 did not specify the affiliations of the co-authors. 

Thus, we focused on the remaining 3,866 articles with specified affiliations of co-

authors. Moreover, among the 3,866 articles, 3,306 are articles published solely by 

domestic organisations, of which 2,088 are articles involving only non-collaborating 

domestic organisations and 1,778 collaborating domestic organisations. The 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   225	  

remaining 560 articles resulted from international collaborations. Table S1 shows the 

total number of articles, the number of organisations collaborating at least once with 

international organisations, and the number of domestic organisations of the top 20 

countries ranked by number of articles in robotic surgery resulted from international 

collaborations. 

 
Country Number of articles 

with international 

collaborations 

Number of 

articles 

Number of organisations 

collaborating at least once 

with international 

organisations 

Number of 

domestic 

organisations 

USA 350 1846 188 520 

Italy 95 280 60 127 

Germany 94 359 59 137 

France 86 204 60 103 

South Korea 75 352 33 58 

Canada 73 159 19 33 

United Kingdom 67 167 39 68 

Japan 59 224 36 112 

Austria 39 86 10 20 

China-Hong 

Kong 34 179 31 71 

Brazil 27 34 21 26 

Belgium 26 61 11 17 

Netherlands 22 88 21 32 

Switzerland 22 40 14 14 

Australia 16 35 12 31 

Spain 16 46 16 41 

Turkey 14 79 13 49 

Singapore 13 27 5 13 

Israel 12 16 10 11 

Greece 11 21 9 12 

Table S1. Total number of articles, number of organisations collaborating at least once with 

international organisations, and number of domestic organisations of the top 20 countries ranked by 

number of articles resulting from international collaborations. 
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The 560 articles that resulted from international collaborations involved from a 

minimum of 2 countries to a maximum of 19 countries, with a median of 2 countries. 

The organisations involved in these 560 articles range from a minimum of 2 

organisations to a maximum of 43 organisations per article, with a median value of 3 

organisations per article. Given an article resulting from international collaborations, 

a country contributes in proportion to the share of domestic organisations appearing 

as the affiliations of the co-authors in the byline. Across the 560 articles here 

considered, a country can contribute to a given article through a minimum of one 

organisation to a maximum of 21 organisations, and a median of one organisation per 

article.  

 

S.2 Building the international collaboration network 

To construct the collaboration network among countries, first we built the 

collaboration network among the 1,700 organisations that carried out research on 

robotic surgery. The nodes of the network are the organisations, and links refer to 

collaborations between organisations. Specifically, a link exists between any two 

organisations when one or more scholars affiliated with one organisation co-authored 

at least one article with one or more scholars affiliated with the other organisation. 

Out of the 1,700 organisations, 1,543 were connected through at least one 

collaboration. The largest connected component includes 1,334 organisations, and in 

total the network comprises 6,000 collaboration links. 

 

To construct the inter-organisational network, we first define 𝑨𝒐𝒓𝒈 as the undirected 

and binary bipartite authorship matrix defining connections between each 

organisation 𝑜𝑟𝑔  and each article 𝑎  such that element 𝑎!,!"# = 1  if and only if 
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organisation 𝑜𝑟𝑔 contributed to article 𝑎, and 𝑎!,!"# = 0 otherwise.1 We then define 

𝑪𝒐𝒓𝒈 as the undirected and weighted projected one-mode collaboration matrix, where 

each element 𝑐!,!
!"# > 0 if and only if organisation ℎ collaborated with organisation 𝑘. 

That is, 𝑐!,!
!"# > 0 when organisation h and organisation k co-authored at least one 

publication.  

 

The weight of each collaborative tie between any two organisations is measured 

according to the method proposed by Newman (2001).2 In particular, the total weight 

𝑐!,!
!"# of the collaborative tie between two organisations h and k is assumed to be equal 

to the sum of the strengths 𝑤!,! contributed by each of the articles co-authored by the 

two organisations, where strength 𝑤!,! is defined as: 

𝑤!,! =
1

𝑛! − 1
, 

 
 
and 𝑛! is the number of organisations appearing in the byline of article a. In other 

words, the total weight 𝑐!,!
!"# of the collaborative tie between organisations h and k is: 

(i) proportional to the number of articles these organisations co-authored; and (ii) 

inversely proportional to the number of organisations involved in each article. Note 

that all articles published by one single organisation were excluded from the above 

measure as they did not contribute to the inter-organisational network.  

 

Next, to build the collaboration network among countries, we define 𝑨𝜸  as the 

undirected and unweighted matrix of connections among all countries, where element 

𝑎!,! = 1 if at least one organisation in country 𝑖 collaborated with the at least one 

organisation in the country 𝑗, and  𝑎!,! = 1 otherwise. That is, letting 𝑂!and 𝑂!be, 

respectively, the sets of organisations in country i and country j, the entry 𝑎!,! of 
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matrix 𝑨𝜸 is equal to one when there are at least two institutions, ℎ ∈ 𝑂! and 𝑘 ∈ 𝑂!, 

such that at least one scholar affiliated with 𝑂! and one scholar affiliated with 𝑂! co-

authored at least one publication.   

 

Finally, to obtain the weights 𝑐!,!
!  of the links connecting countries, we then define 𝑪𝜸 

as the undirected and weighted collaboration matrix, where each element 𝑐!,!
𝜸 > 0 if 

and only if country 𝑖 collaborated with country 𝑗 through at least one co-authored 

publication. More specifically, for any pair of countries i and j, the weight 𝑐!,!
𝜸  of the 

link connecting i and j is equal to the sum of the weights of all links connecting any 

organisation ℎ ∈ 𝑂! in country i to any organisation 𝑘 ∈ 𝑂! in country j, such that 

𝑐!,!
!"# > 0. Formally, we have: 

𝑐!,!
! = 𝑐!,!

!"#

!∈!!,!∈!!

 

 
where, as usual, 𝑂!and 𝑂!are, respectively, the sets of organisations in country i and 

country j.   

 

The overall inter-organisational network comprises 6,000 collaborative links 

connecting 1,543 organisations worldwide. According to the type of collaboration, we 

can distinguish between the network connecting organisations involved only in 

domestic collaborations and the network connecting organisations involved in 

international collaborations. The former comprises 2,674 links and 1,162 

organisations, while the latter 3,513 links (of which 1,116 are within national borders 

and 2,397 across countries) and 772 organisations (of which 513 also collaborated 

within national borders). The network among countries as well as our network study 
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draw on the 2,397 international links connecting 772 organisations across different 

countries. 

  

S.3 Outcome measures 

In this Section, we provide details on the dependent measures used in the analysis. 

These are the innovation index and research impact.  

 

S.3.1 The innovation index 

We classified each article in terms of its level of evidence following the procedure 

proposed by Garas et al. (2017).3 Each articles was associated with one out of 8 

categories corresponding to distinct surgical innovation stages as shown in Table S2. 

 
Surgical innovation 
stage 

Description 

1 Randomised controlled trial 
2 Non-randomised controlled trial 
3 Observational study with controls 
4 Observational study without controls 
5 First-in-human study 
6 Cadaveric study 
7 Animal study 
8 Description of idea / laboratory evaluation 

Table S2.  Description of surgical innovation stages with which articles can be associated according to 

their level of evidence. 

 
 
We could assign level of evidence to 3,389 articles. Figure S.3 shows the temporal 

distributions of these 3,389 articles in each category. Among these articles, only 3,376 

showed the affiliations of co-authors. Moreover, among the articles with associated 

level of evidence, 1,808 involved only non-collaborating domestic organisations, 

1,077 involved only collaborating domestic organisations, and 491 resulted from 

international collaborations. 
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Figure S2. Number of articles per level of evidence over time. 

 

We then computed the innovation index following the definition given in Garas et al. 

(2017).3 For each organisation orgi∈Oi in country i, we computed the innovation 

index 𝑖𝑖!"#! as a function of the innovative value of all articles published by authors 

affiliated with orgi. We then measured the innovation index iii of country i as the sum 

of the innovation indexes of all organisations residing in i. Formally, we have 

 

𝑖𝑖! =    𝑖𝑖!"#!
!"#!∈!!

=

1
𝑐!∈! × 𝑝!

!"#!

𝑃!

max
!"#∈!

1
𝑐!∈! ×

𝑝!
!"#

𝑃!

  ×100
!"#!∈!!

  , 

 
 
where 𝑐 ∈ 𝑆 = [1,… ,8] is an integer value labeling the ordinal category associated 

with the implementation stage according to level of evidence,   𝑝!
!"#!   is the count of 

publications of organisation orgi in country i associated with category 𝑐 , and 

𝑃! =    𝑝!
!"#

!"#∈! is the total number of publications associated with category 𝑐 

across all organisations in the data set (i.e., in the set O). Figure S4 shows the ranking 

of countries according to the average of innovation indices of all the organisations 
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within their borders. The figure also highlights the most innovative organisations 

within and between countries. 

 

	  
Figure S3. Ranking of countries and organisations according to normalised innovation index. 

Countries have been ranked according to the sum of organisations’ innovation index. For each country, 

the boxplot of organisational innovation indices are depicted. Grey shaded areas correspond to distance 

between lower and upper quartiles (interquartile range), darker shade area denotes distance between 

lower quartile and median. Whiskers are showed to display all points within 1.5 times the interquartile 

range.  To obtain the normalised innovation index, we divided each organisation’s innovation index by 

the maximum value observed in the dataset. 

 

S.3.2 Research impact 

For each organisation, we measured its academic performance using the sum 𝑠𝑛𝑐!"# 

of the normalised citations received by all the articles published by the organisation 

across the years: 

 
𝑠𝑛𝑐!"# = 𝑛𝑐!!"#,! ,

!!"#,!!
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where 𝑛𝑐!!"#,! refers to the normalised citations received by article a published by 

(authors affiliated with) organisation org in year y. To obtain normalised citations, the 

citation count for each publication in a given year was divided by the average number 

of citations obtained by all articles published in the same year: 

 

𝑛𝑐!!"#,! =
𝑐𝑖𝑡!!"#,!
< 𝑐𝑖𝑡!,! >

, 

 
 
where the average < 𝑐𝑖𝑡!,! > was computed across all articles published by all 

organisations in year y. Finally, we measured the research impact snci of country i as 

the sum of the normalised citations received by each organisation orgi∈Oi in country 

i. Formally, we have 

𝑠𝑛𝑐! = 𝑛𝑐!!"#!,!
!!"#!!!"#!∈!!

, 

 
 
where 𝑛𝑐!!"#!,! refers to the normalised citations received by article a published by 

(authors affiliated with) organisation orgi in country i and in year y. 

 

S.4 Breaking down research impact and innovation into domestic and foreign 

components 

The overall academic performance of a country can be broken down into sub-

components according to the nature of the institutional authorship. To this end, we 

distinguished among: (i) the fraction of the overall academic performance attributable 

to articles authored by a singular domestic institution (no collaboration); (ii) the 

fraction of the overall academic performance attributable to articles resulting from 

collaborations among uniquely domestic organisations (i.e., domestic collaboration); 

and (iii) the fraction of the overall academic performance attributable to articles 
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resulting from collaborations among domestic and foreign organisations (i.e., 

international collaboration). Moreover, we further broke down the fraction of 

performance resulting from international collaborations into a component attributed to 

domestic organisations and a component attributed to foreign organisations (see 

Figure S4).  

 

S.4.1 Breaking down a country’s sum of normalised citations (snc) into its 

domestic and foreign components 

We denote by snc! the sum of normalised citations obtained by country 𝑖, and by 𝑎! 

any article in which the sole author or at least one of the co-authors is affiliated with 

an organisation in country 𝑖. We want to break down snc!  into its domestic and 

foreign components in order to understand how much of the overall academic success 

of a country can be attributed to international collaborations as opposed to solely 

domestic endeavours. For each country, we can then distinguish between the portion 

of the country’s overall academic success that originates from domestic organisations 

collaborating with foreign ones (𝑖𝑛𝑡𝐷𝑆𝑁𝐶!), the portion of success attributable to the 

foreign organisations collaborating with domestic ones (𝐹𝑆𝑁𝐶!), and finally the 

portion of success related to domestic organisations not collaborating internationally 

(𝑒𝑥𝐷𝑆𝑁𝐶!).    In turn, the foreign component can be broken down into regional 

subcomponents (𝐹𝑆𝑁𝐶!,!) to characterise the geographical dispersion of international 

collaboration and the specific regional contribution to a country’s success. Formally, 

we have: 
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snc! = 𝑛𝑐!!
𝑁!
!!

𝑁!!
+

𝑁!
!!

𝑁!!
!!!

!!

!!!!

= 𝑛𝑐!!
𝑁!
!!

𝑁!!
+ 𝑓!,!

!!

!!!

!!

!!!!

= 𝑛𝑐!! 𝑑!
!! + 𝑓!

!!

!!

!!!!

 

= 𝑛𝑐!!𝑑!
!!

!!

!!!!

+ 𝑛𝑐!!𝑓!
!!

!!

!!!!

= 𝐷𝑆𝑁𝐶! + 𝐹𝑆𝑁𝐶! , 

 
 
where 𝑛𝑐!!  refers to normalised citations of article 𝑎! , 𝐴!  is the total number of 

articles published by country i, 𝑁!
!! is the number of unique domestic organisations 

with which co-authors of article 𝑎! , are affiliated, 𝑁!
!!  is the number of unique 

organisations from country j in article 𝑎! , and  𝑁!!   is the total number of unique 

organisations in article 𝑎!.  

 

If article 𝑎!  to which country 𝑖  contributed shows exclusively organisations from 

country i, then the domestic component 𝑑!
!!   = 1 and the foreign component 𝑓!

!!   = 0. 

If, instead, article 𝑎! to which country 𝑖 contributed shows organisations both from 

country i and from other countries, then the domestic component would be 0 < 𝑑!
!!   <

1, and the foreign component would be 0 < 𝑓!
!!   < 1. In both cases, for each article 𝑎! 

the condition would hold that 𝑑!
!!   + 𝑓!

!!   = 1. 

 

Regarding the values taken by 𝑑!
!!, let us distinguish between the case of articles in 

which there are only domestic organisations and the case of articles in which both 

domestic and foreign organisations appear. Formally, 

 
𝐷𝑆𝑁𝐶! = 𝑒𝑥𝐷𝑆𝑁𝐶! + 𝑖𝑛𝑡𝐷𝑆𝑁𝐶!, 

where 
𝑒𝑥𝐷𝑆𝑁𝐶! = 𝑛𝑐!!𝑑!

!!
!!  for each 𝑎!   such  that 𝑑!

!! = 1; 
𝑖𝑛𝑡𝐷𝑆𝑁𝐶! = 𝑛𝑐!!𝑑!

!!
!!    for each  𝑎!   such  that 𝑑!

!! < 1. 
 

Thus, 𝑒𝑥𝐷𝑆𝑁𝐶! refers to the contribution of the normalised citations obtained by 

country i attributable to the articles in which only domestic organisations appear, and 
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𝑖𝑛𝑡𝐷𝑆𝑁𝐶! is the contribution of citations attributable to the domestic organisations 

across all articles in which domestic organisations co-appear with foreign ones. 

Moreover, the foreign component 𝑓!
!!   can be further broken down into specific 

contributions attributable to the various foreign regions (e.g., continents) with which 

the focal country collaborates. Each foreign country 𝑗 can be attributed to a region 

= 1, 2,… ,𝑅 . We can then sum up the foreign contributions according to the region 

each country belongs. In this way, we can break down the overall foreign component 

𝐹𝑆𝑁𝐶! into regional sub-components. Formally,  

 

𝐹𝑆𝑁𝐶! = 𝑛𝑐!!𝑓!
!!

!!

!!!!

= 𝑛𝑐!!𝑓!,!
!!

!!!

!!

!!!!

= 𝑛𝑐!!
𝑁!
!!

𝑁!!
!!!

!!

!!!!

= 𝑛𝑐!!
𝑁!,!
!!

𝑁!!
!!!

!!

!!!!!

= 

= 𝑛𝑐!!𝑓!,!,!
!!

!!!

!!

!!!!!

= 𝐹𝑆𝑁𝐶!,!
!

. 

 
 
Thus, country i’s sum of normalised citations 𝑠𝑛𝑐!   can be broken down into its 

domestic and foreign components as follows 

 
snc! = 𝐷𝑆𝑁𝐶! + 𝐹𝑆𝑁𝐶! = 𝑒𝑥𝐷𝑆𝑁𝐶! + 𝑖𝑛𝑡𝐷𝑆𝑁𝐶! + 𝐹𝑆𝑁𝐶!,!

!

. 

 
 
S.4.2 Breaking down a country’s innovation index (ii) into its domestic and 

foreign components 

We denote by 𝑖𝑖! the innovation index of country 𝑖, and by 𝑎!! any article in category 

𝑐  in which the sole author or at least one co-author is affiliated with an organisation in 

country 𝑖. Once again, we want to break down this summary statistics into domestic 

and foreign components in order to understand the extent to which the overall 

innovation index of a country can be attributed to international collaborations as 

opposed to domestic ones. For each country, we can then distinguish between the 

portion of a country’s overall innovation index that originates from domestic 
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organisations collaborating with foreign ones (𝑖𝑛𝑡𝐷𝐼𝐼!), the portion that relates to 

foreign organisations collaborating with domestic ones (𝐹𝐼𝐼!), and finally the portion 

attributable to articles in which only domestic organisations appear (𝑒𝑥𝐷𝐼𝐼!).  In turn, 

the foreign component of innovation can be further broken down into regional 

subcomponents (𝐹𝐼𝐼!,!) to characterise the geographical dispersion of international 

collaboration and the specific regional contribution to a country’s innovativeness. 

Formally, we have 

 

𝑖𝑖! =
1
𝑐

!

!!!

𝐴!!

𝐴!
  , 

 
 
where 𝐴!  is the overall number of articles that belong to category 𝑐  across all 

countries, 𝐴!! is the number of articles to which country 𝑖 contributed and that belong 

to category 𝑐, and C is the total number of categories used to measure innovation. We 

have 

 

𝐴!! =
𝑁!
!!
!

𝑁!!
! +

𝑁!
!!
!

𝑁!!
!

!!!

!!
!

!!
!!!

=
𝑁!
!!
!

𝑁!!
! + 𝑓!,!

!!
!

!!!

!!
!

!!
!!!

= 𝑑!
!!
!
+ 𝑓!

!!
!

!!
!

!!
!!!

 

=      𝑑!
!!
!

!!
!

!!
!!!

+ 𝑓!
!!
!

!!
!

!!
!!!

= 𝐷!! + 𝐹!! , 

 
 
where 𝑎!! is an article in category c and to which country i contributed, 𝑁!!

!
 is the total 

number of unique organisations appearing in article 𝑎!!, 𝑁!
!!
!
is the number of unique 

domestic organisations appearing in article 𝑎!! , and  𝑁!
!!
!
is the number of unique 

foreign organisations appearing in article 𝑎!!. Thus, 𝐷!! is the total fraction of articles 

in category c contributed by country i that is attributable to domestic organisations, 

and 𝐹!! is the fraction attributable to foreign organisations. Notice that, for each article 

𝑎!!, the condition holds that  
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!!
!!
!

!!!
! +

!!
!!
!

!!!
!!!! = 𝑑!

!!
!
+ 𝑓!

!!
!
= 1. 

 
 
Thus, if article 𝑎!!   belonging to category 𝑐 shows exclusively organisations from 

country i, then the domestic component 𝑑!
!!
!
= 1 and the foreign component 𝑓!

!!
!
= 0. 

If, by contrast, 𝑎!! belonging to category 𝑐 shows organisations both from country i 

and from foreign countries, then the domestic component would be 0 < 𝑑!
!!
!
< 1 and 

the foreign component 0 < 𝑓!
!!
!
< 1.  

 

Regarding the domestic component 𝐷!!, we can now distinguish between the portion 

that derives from articles that are exclusively domestic and the one deriving from the 

domestic component of the articles in which both domestic and foreign organisations 

appear. We have 

 
𝐷!! = 𝐷!,!"! + 𝐷!,!"#! , 

where 
𝐷!,!"! = 𝑑!

!!
!

!!
! , for each 𝑎! such that 𝑑!

!!
!
= 1; 

𝐷!,!"#! = 𝑑!
!!
!

!!
! for  each  𝑎!   such  that 𝑑!

!!
!
< 1. 

 
 
Thus, 𝐷!,!"!  is the sum of the contributions of domestic organisations across the subset 

of articles in which they are the sole contributors (i.e., the total number of articles in 

category c in which only domestic organisations appear), and 𝐷!,!"#!  is the sum of the 

contributions of domestic organisations across all articles in which they appear jointly 

with foreign ones.   

 

In turn, the foreign component 𝑓!
!!
!
   can be further broken down into specific 

contributions related to the regions in which the foreign countries are located. To this 



Georgios	  Garas	  PhD	  Thesis	  2020	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Imperial	  College	  London	  	  

	   238	  

end, each foreign country 𝑗 is attributed to a region = 1, 2,… ,𝑅. We can then sum up 

the foreign contributions according to the region each country belongs to. We have 

 

𝑓!
!!
!
= 𝑓!,!

!!
!

!!!

=
𝑁!
!!
!

𝑁!!
!

!!!

=
𝑁!,!
!!
!

𝑁!!
!

!!!

= 𝑓!,!,!
!!
!

!!!!!

. 

 

In this way, we can break down the overall foreign component 𝐹!! into regional sub-

components:  

𝐹!! = 𝑓!
!!
!

!!
!

!!
!!!

= 𝑓!,!
!!
!

!!!!

!!
!

!!
!!!

= 𝑓!,!
!!
!

!!!

!!
!

!!
!!!!

= 𝐹!,!!

!

. 

 
 
Thus, a country i’s innovation index 𝑖𝑖!   can be broken down into its domestic and 

foreign components as follows 

 

𝑖𝑖! =
1
𝑐

!

!!!

𝐴!!

𝐴!
=

1
𝑐

!

!!!

𝐷!,!"! + 𝐷!,!"#! + 𝐹!!

𝐴!
=

1
𝑐

!

!!!

𝐷!,!"! + 𝐷!,!"#! + 𝐹!,!!!

𝐴!
 

=
1
𝑐

!

!!!

𝐷!,!"!

𝐴!
+

1
𝑐

!

!!!

𝐷!,!"#!
!

𝐴!
+

1
𝑐

!

!!!

𝐹!,!!!

𝐴!
= 𝑒𝑥𝐷𝐼𝐼! + 𝑖𝑛𝑡𝐷𝐼𝐼! + 𝐹𝐼𝐼! , 

 
 
where 𝑒𝑥𝐷𝐼𝐼! + 𝑖𝑛𝑡𝐷𝐼𝐼!  is the total portion of country i’s innovation that is 

attributable to domestic organisations, and 𝐹𝐼𝐼! is the foreign component. In turn, 𝐹𝐼𝐼! 

can be further broken down into its regional components: 

 

𝐹𝐼𝐼! =
1
𝑐

!

!!!

𝐹!,!!!

𝐴!
=

1
𝑐𝐴!

!

!!!

𝐹!,!!

!

=
1
𝑐𝐴!

!

!!!

𝐹!,!!

!

= 𝐹𝐼𝐼!,!
!

. 

 
Finally, we have: 

𝑖𝑖! =
1
𝑐

!

!!!

𝐴!!

𝐴!
=   𝑒𝑥𝐷𝐼𝐼! + 𝑖𝑛𝑡𝐷𝐼𝐼! + 𝐹𝐼𝐼!,!

!

. 
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Figure S4. Network of foreign contributions to countries’ research impact (a) and innovation (b). The 

width of each link is proportional to the pointing country’s contribution to the success of the pointed 

one. The size of each node is proportional to the sum of the node’s weights of incoming links (i.e., the 

in-strength).  

 

S.5 Formal definitions of covariates  

S.5.1 Network degree 

Given the set of countries Γ, we define the degree ki of country i as the number of 

links connecting the country to other countries in Γ. Formally, we have  

 

𝑘! = 𝑎!,!
!∈!

, 

 
 
where 𝑎!" = 1 if there is at least one organisation in country 𝑖 that collaborated with 

the at least one organisation in country 𝑗 (𝑖 ≠ 𝑗), and 𝑎!" = 0 otherwise. Thus, 𝑎!" = 1 

implies that there are at least two scholars, one affiliated with an organisation in 

country i and the other in country j, that co-authored at least one publication, thus 
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generating a collaboration link between the corresponding countries.90  

 

S.5.2 The local clustering coefficient 

Network analysis provides a set of measures for quantifying a number of structural 

properties at different levels of a system.1 For example, measures can be calculated at 

a node’s level to detect its topological position (e.g., broker between otherwise 

disconnected partners) in the ego-centred network (i.e., the network including 

connections between the node and its partners as well as connections between these 

partners), or in the whole network (e.g., how close the node is to all other others in the 

network). By constructing and examining each node’s ego-centred network, we aim to 

detect the extent to which a node’s neighbours are also connected with each other, and 

in so doing we engage with current debates on social capital and the relative benefits 

of closed versus open social structures.4  

 

Using the weighted network as defined above, we computed the local clustering 

coefficient of each country, which measures the extent to which the country’s ego-

centred network is a closed collaborative structure.1,5 Formally, the (unweighted) 

local clustering coefficient 𝑐𝑐! of country 𝑖 in a binary network is defined as the ratio 

between the number of actual triangles 𝑡! containing country i  and its 𝑘! neighbours, 

and the maximum possible number of such triangles, 𝑡!!"# = 𝑘!(𝑘! − 1)/2: 

 

𝑐𝑐! =
2×𝑡!

𝑘! 𝑘! − 1
                                                          for  𝑘! ≥ 2                    

0                                                                                for  𝑘! = 0,1
. 

 
 
In our study, we computed the clustering coefficient only for countries with 𝑘! ≠ 0, 1.  
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S.5.3 Efficiency 

To measures a country’s opportunities of brokerage, we also measured the country’s 

efficiency, namely the degree to which the country’s ego-centred network is non-

redundant.4 Efficiency thus captures the extent to which a country’s ego-centred 

network is an open structure. To measure efficiency, we first computed effective size, 

a measure originally introduced by Burt (1992)5 to capture the extent to which each of 

the first neighbours of a node is redundant with respect to the other neighbours. 

Following Latora et al. (2013),4 a country i’s effective size, 𝑒𝑠! , can be defined as  

 
𝑒𝑠! = 𝑘! − 𝑘! − 1 𝑐𝑐! , 

 
 
where 𝑘!  is the degree of country i (i.e., the number of countries with which i 

collaborated), and 𝑐𝑐!  is the local binary local clustering coefficient (i.e., the 

coefficient presented in S.5.2 computed using the unweighted network).  

 

The efficiency 𝑒𝑓𝑓!  of country i (i.e., the normalised effective size) can now be 

computed as the ratio between the country’s effective size and degree:  

  

𝑒𝑓𝑓! =
𝑒𝑠!
𝑘!

= 1 −
𝑘! − 1
𝑘!

𝑐𝑐!           𝑘! > 0

0                                                                                  𝑘! = 0
 

 
 
Notice that, as with the local clustering coefficient (Section S.3.3), efficiency was 

computed only for countries with 𝑘! ≠ 0, 1.  

 

S.5.4 Geographical entropy 

In addition to the network-based measures described above, for each country we 

measured the diversity of the geographical locations of collaborators. To this end, let 

us define 𝛤!   as the set of countries in which the collaborating organisations of a given 
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country i are located, i.e., 𝛤! = 𝛾!  , 𝛾!  ,… , 𝛾!   . Formally, the geographical entropy of 

country i can be defined as follows: 

 

𝜀! = − 𝑝!,!! 𝑙𝑜𝑔 𝑝!,!!
!!!!!

, 

 
 
where 𝑝!,!! is the fraction of country i’s collaborative effort towards organisations 

located in country 𝛾! (i.e., the ratio between the sum c!,!!  of the weights of links 

between i and all organisations in country 𝛾! and the sum c!,!!!!  ∈!!  of the weights of 

links between i and all countries in Γ!). Notice that each weight c!,!! is measured once 

again according to the method proposed by Newman (2001) (see Section S.2). 

 

Given the set 𝛤 of countries in the data set and the norm 𝛤  of such set, a country’s 

geographical entropy can range from zero (when all international collaborators are 

located in the same country) to log( 𝛤 − 1) (when the international collaborators 

are uniformly distributed across 𝛤 − 1 countries, i.e., all countries except the focal 

one). Similarly, given the set 𝛤!  of countries with which country i collaborates, 

entropy is maximised when the country equally distributes its collaborative efforts 

across all countries in Γ!. That is, for each country 𝛾!  , 𝛾!  ,… , 𝛾!   ∈ Γ!, 𝜀! is maximised 

when each fraction of collaborative effort is equal to 𝑝!,!! =
!
!!

, where Γ!  is the 

norm of the set Γ!. 

 

Thus, geographical entropy enables us to assess countries beyond the mere count of 

international collaborators, and to distinguish between countries that, while having the 

same number of international collaborators, differ in terms of their geographical 

dispersion. This is important, as some countries may have a large number of 
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international collaborators, yet all confined within the same country, whereas others 

may have few collaborators that nonetheless are widely geographically dispersed.  

 

S.5.5 Control variables 

Other country-level characteristics may influence performance. In this study we 

controlled for the following two additional variables. First, for each country we 

measured the average contribution of international collaborators to a scientific 

publication. Given country i and article 𝑎!, let 𝑁!
!! be the number of unique domestic 

organisations in country i with which co-authors of 𝑎! are affiliated, and  𝑁!!   be the 

total number of unique organisations contributing to article 𝑎!. We define 𝑝!!
!"#! =

!!
!!

!!!
 

as the fraction of organisations contributing to article 𝑎! that reside in country i. The 

average contribution of international organisations to country i’s publication can thus 

be defined as 

𝑝!!
!"# = 1 −

𝑁!
!!

𝑁!!!!

𝐴!
  , 

 
where 𝐴! is the total number of articles published by country i. Thus, 𝑎!!"#  captures 

the degree to which international collaboration contributed on average to an article 

published by country i.  

 

Second, for each country we constructed a measure of volume by computing the 

average number of publications per domestic contributing organisation. Formally, we 

have 

𝐴!"#! =
𝐴!
𝑁!
  , 
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where𝑁!  is the total number of unique organizations in country i. Finally, we 

controlled for each country’s geographical regions, by estimating fixed effects for the 

corresponding categories (see section S.1). 

 

S.6 Regression analysis 

In the main manuscript, we reported estimates from two cross-section models of 

research impact and innovation, measured as usual by normalized citation count and 

innovation index, respectively. In both models, the covariates of brokerage and 

geographical dispersion of collaborators were measured in the usual way as efficiency 

and geographical entropy, computed on the network between countries and 

standardised for the sake of interpretation. We also estimated parameters for two 

control variables (i.e., relevance of international contribution and average number of 

articles per domestic institution) and fixed effects for geographical regions. 

 

In both models, we treated both efficiency and geographical entropy as endogenous 

covariates. The intuitive justification is that some unobserved covariates (e.g., each 

country’s accumulated knowledge or ability to collaborate) might account for 

variations both in the country’s ability to broker between collaborators, to amplify 

geographical diversity of collaborators, and secure success (i.e., efficiency and 

entropy might be correlated with the level-one country-specific residuals). To correct 

for such level-one endogeneity of efficiency and entropy, in both models we used the 

following (excluded) instrumental country-level variables: (i) number of unique 

domestic organisations collaborating at least once with international organisations; (ii) 

number of unique domestic organisations collaborating at least once with one another. 

We also squared each of these variables and created an interaction between them. In 
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total, we thus used five excluded instrumental variables. To avoid problems of multi-

collinearity arising from high correlation between variables, before squaring and 

multiplying variables (i) and (ii) to estimate interaction effects, we centred them 

around their means (i.e., we subtracted the mean from the variable).  

 

Table S3 reports the means, standard deviations, minimum and maximum values of, 

and zero-order correlations between, all (non-centred) variables used in the regression 

models. 

 
Variable Mean St. Dev. Min Max 1 2 3 4 5 

1. 1. Research 
impact 

2. 2. Innovation 
index 

3. 3. Rel. int. coll. 
4. 4. Articles per 

inst. 
5. 5. Efficiency 
6. 6. Geog. entropy 

86·09 
9·52 
0·31  
1·64 
0·53 
1·14        

273·46 
24·72 
0·21   
1·07   

0·302  
0·89                               

0 
0 
0 

0·33 
0·09 

0              

2034·80 
173·53 

0·8 
 6·07 

     1·00 
  2·79 

 
 0·94 
-0·22 
 0·47 
-0·01 
 0·42 

 
 

-0·23 
 0·41 
-0·06          
0·50 

 
 
 

-0·26 
 0·18 
-0·16 

 
 
 
 

-0·30 
 0·55 

 
 
 
 
 
-

0·72 

Table S3. Means, standard deviations, minimum and maximum values, and zero-order correlations 

between all (non-centred) variables in the regression models. 
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S.6.1 Results 

Tables S4 and S5 report the estimated coefficients and robust standard errors for the 

two models. Both models are efficient generalised methods of moments (GMM) 

instrumental-variables two-step estimators that are robust to heteroskedasticity.  

 
Variables Coeff. Robust st. 

error 
z p> 𝒛  95% Conf. interval 

7. Rel. int. coll. 
8.  
9. Articles per inst. 
10.  
11. Efficiency 
12.  
13. Geog. entropy 

 
Africa 
 
Asia 
 
Central and 
South America 
 
Europe 
 
Middle East 
 
North America 
 
Constant 
 

68·272    
 

33·668    
 

211·320 
 

4.39 
 

-75·966 
 

-10·371  
 

-126·965 
 
 

 -139·831 
 

-160·874 
 

524·986 
 

74·600     
 

158·432      
 

48·883      
 

63·625 
 

55.760   
 

237·91   
 

88·571  
 

104·473  
 
 

82·295    
 

122·330    
 

491·652  
 

106·865                       

0·43    
 

0·69    
 

3·32 
 

244·527   
 

-0·32     
 

-0·12   
 

-1·22    
 
 

-1·70   
 

-1·32    
 

1·07  
 

0·70      

0·667     
 

0·491     
 

0·001 
 

0·000  
 

0·749  
 

0·907    
 

0·224   
 
 

0·089    
 

0·188 
 

0·286   
 

0·485       

-242·248     
 

-62·141     
 

86·617 
 

135·238    
 

-542·261    
 

-183·967    
 

-331·729  
 
 

-301·127    
 

-400·636 
 

-438·635 
 

-134·852                     

378·793 
 

129·478 
 

336·022 
 

353.815 
 

390·329 
 

163·225   
 

77·798   
 
 

21·465     
 

78·888   
 

1488·606 
 

284·051     

14. No. Observations: 56 
F(10, 45) = 3·26 
Centred R2 = 0·572 
Uncentred R2 =   0·614 
Root MSE = 184·4 
Table S4. Instrumental-variables models of countries’ research impact. The models are efficient GMM 

instrumental-variables estimators with standard errors robust to heteroskedasticity. Reported values of 

the square root of the mean squared error (MSE) refer to the estimated standard deviation 𝜎! of the 

idiosyncratic disturbance.  
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Variables Coeff. Robust st. 
error 

z p> 𝒛  95% Conf. interval 

15. Rel. int. coll. 
16.  
17. Articles per inst. 
18.  
19. Efficiency 
20.  
21. Geog. entropy 

 
Africa 
 
Asia 
 
Central and 
South America 
 
Europe 
 
Middle East 
 
North America 
 
Constant 
 

8·109        
 

-2·363 
 

18·819   
  

30·850 
     

-2·048   
 

9·151   
 

-2·890    
 
  

-1·968         
 

-3·022   
 

47·184    
 

7·116    
 

11·384     
  

4·174    
  

6·108  
     

4·641   
    

20·654     
 

9·557      
 

11·528 
 
 

9·771         
 

13·736  
 

43·343      
 

10·899         

0·71  
   

-0·57 
    

3·08   
  

6·65   
 

-0·10  
 

0·96     
  

-0·25    
 
 

-0·20    
 

-0·22   
 

1·09   
 

0·65       

0·476  
    

0·571 
     

0·002       
 

0·000  
 

0·921 
 

0·338         
 

0·802     
 
 

0·840 
 

0·826 
 

0·276  
 

0·514                  

-14·203 
 

-10·545 
     

6·848     
 

21·753  
 

-42·530 
 

-9·581     
    

-25·483     
 
 

-21·119 
 

-29·944   
 

-37·767 
 

-14·246     
     

30·421 
 

5·819 
 

30·791 
 

39·948 
 

38·433 
 

27·883       
 

19·704 
 
 

17·183 
 

23·899   
 

132·135 
 

28·479 

22. No. Observations: 56 
F(10, 45) = 7·17 
Centred R2 = 0·519 
Uncentred R2 = 0·587 
Root MSE = 17·63 
Table S5. Instrumental-variables models of countries’ innovation. The models are efficient GMM 

instrumental-variables estimators with standard errors robust to heteroskedasticity. Reported values of 

the square root of the mean squared error (MSE) refer to the estimated standard deviation 𝜎! of the 

idiosyncratic disturbance.  

 

 
S.6.2 Specification tests 

Table S6 reports findings from a number of specification tests concerning regressor 

endogeneity, underidendification, overidentifying restrictions, weak identification, 

and instrument relevance. We also estimated alternative models with better finite-

sample properties and more robust to the presence of weak instruments than the 

instrumental-variables and two-step efficient GMM estimators. 
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S.6.2.1 Tests of regressor endogeneity 

C (GMM distance) tests for regressor endogeneity in both models lead to strong 

rejection of the null hypothesis that regressors are exogenous (p-value < 0·01 in both 

models). We also performed the robust Durbin-Wu-Hausman tests of joint 

endogeneity of regressors, and produced results that reject exogeneity of the 

covariates (p-value < 0·05). These tests are robust to  

 

S.6.2.2 Tests of underidentification, overidentifying restrictions, weak 

identification, and instrument relevance 

We tested whether our endogenous regressors are not identified by the excluded 

instruments after partialling-out the included instruments. This test is equivalent to 

testing whether the matrix of reduced form coefficients for the endogenous regressors 

is full rank vs. less than full rank. We calculated the LM version of the Kleibergen-

Paap rk statistic, which has been proposed as a generalisation of the Anderson 

canonical correlation rank statistic to the non-i.i.d. case.6 Across both models the test 

strongly rejects the null hypothesis of underidentification (p-value < 0·01). 

 

Instruments are valid if they are (i) exogenous and (ii) relevant. To test whether the 

excluded instruments are exogenous, we computed the Hansen’s J test of 

overidentifying restrictions. The joint null hypothesis is that the instruments are valid 

instruments, i.e., uncorrelated with the error term, and that the excluded instruments 

are correctly excluded from the estimated equation. Findings from the Hansen’s J test 

do not reject the null hypothesis, and thus do not cast doubt on the validity of the 

instruments.   
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Relevance means that, after controlling for the remaining exogenous regressors in the 

structural equation, the excluded instruments can account for significant variation in 

the endogenous regressors. Instruments that are only marginally relevant are typically 

referred to as weak instruments.7 Findings (not reported here) from the F-tests for the 

joint significance of the excluded instruments in the first-stage regressions of each of 

the endogenous regressors reject the joint null hypothesis of zero coefficients, 

yielding values above 10 (i.e., the “rule of thumb” suggested by Staiger and Stock for 

rejecting the hypothesis of weak instruments).8 Similar findings (not reported here) 

were obtained based on the Angrist-Pischke multivariate F-test of excluded 

instruments. 

 

Moreover, values (not reported here) of the Shea’s partial R2 (and of its adjusted 

version) for all models also do not seem to flag a problem of weak excluded 

instruments. We also obtained the Kleibergen-Paap rk Wald F statistics (robust to 

heteroskedasticity of standard errors), and across both models we calculated the 

Cragg-Donald Wald F statistic. Finally, across both models, the Anderson-Rubin 

Wald test9 and the Stock-Wright Lagrange multiplier S test7 (both robust to presence 

of weak identification, as well as to heteroskedasticity of standard errors) also reject 

their null hypothesis that the coefficients of the endogenous regressors in the main 

equation are jointly equal to zero (see Table S6). 

 

Moreover, to circumvent potential biases originating from weak instruments and the 

small sample, we fitted the GMM “continuously updated” estimator (CUE) (which in 

turn extends the limited-information maximum-likelihood estimator to account for 

heteroskedasticity of disturbances).10 Recent research has indeed suggested that both 
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estimators have a better finite-sample performance than instrumental-variables and 

GMM estimators when instruments are weak.11 Estimates (not reported here) from the 

CUE models are nearly identical to those reported in Table S5. 

 

 
Tests Model (1) 

Research impact 
Model (2) 

Innovation 
C (GMM distance) test 
 
Robust Durbin-Wu-Hausman test 

𝜒!! = 15 · 419*** 
 

F(2, 43) =  4·214* 

𝜒!! = 11 · 921*** 
 

F(2, 43) =	  4·879* 
 
Kleibergen-Paap rk LM statistic 
 
Hansen J statistic 
 
Kleibergen-Paap rk Wald F statistic 
 
Cragg-Donald Wald F statistic (n. r.) 
 
Anderson-Rubin Wald test 
 
Stock-Wright LM S test 

 
𝜒!! = 16 · 887** 

 
𝜒!! = 3 · 366 (p-value=0·220) 

 
7·840 

 
2·169 

 
F(5, 42) = 3352·58*** 

 
𝜒!! = 12 · 80* 

 
𝜒!! = 16 · 887** 

 
𝜒!! = 3·805 (p-value=	  

0·283) 
 

7·840 
 

2·169 
 

F(5, 42) = 1089·73 *** 
 

𝜒!! = 13 · 87* 
 

Table S6. Specification tests. The first two statistics are tests of endogeneity of regressors. Both tests 

strongly reject the null hypothesis that efficiency and geographical entropy are exogenous covariates. 

The remaining six statistics are tests of underidentification, overidentifying restrictions, weak 

identification, and instrument relevance. The tests strongly reject the null hypothesis that the models 

are underidentified and that the excluded instruments are weak. The tests also do not reject the joint 

null hypothesis that the instruments are valid instruments, i.e., uncorrelated with the error term, and 

that the excluded instruments are correctly excluded from the estimated equation. Note: n. r. = test is 

non-robust to heteroskedasticity; * p < 0·05, ** p < 0·01, *** p < 0·001. 

 
 
S.7 Simulation modelling 

We carried out a number of simulations to shed light on how the UK’s research 

impact and innovation index might be affected as a result of a progressive substitution 

of the actual output produced in collaboration with other EU countries.  
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The data set comprises 346 articles to which at least one of the EU27 countries 

contributed. The EU27 members appearing in our data set are: Austria, Belgium, 

Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, 

Greece, Hungary, Ireland, Italy, Netherlands, Poland, Portugal, Romania, Slovakia, 

Slovenia, Spain, Sweden, and the United Kingdom. 

 

In total, the United Kingdom has contributed to 67 articles (52 associated with level 

of evidence), of which: (i) 32 articles (25 with level of evidence) in collaboration with 

13 of the EU27 countries (i.e., Belgium, Cyprus, Denmark, France, Germany, Greece, 

Ireland, Italy, Netherlands, Poland, Portugal, Slovenia and Spain); (ii) 29 articles (24 

with level of evidence) in collaboration with USA; 14 articles (10 with level of 

evidence) in collaboration with Asian countries (i.e., China (incl. Hong Kong), India, 

Japan, Pakistan, Singapore, South Korea and Taiwan); and 20 articles (12 with level 

of evidence) in collaboration with “other” 11 Rest-of-the World (RoW) countries (i.e., 

Argentina, Australia, Bolivia, Brazil, Canada, Israel, New Zealand, Norway, 

Switzerland, Turkey, and Ukraine). 

 

Of the 32 articles (25 with level of evidence) in collaboration with 13 (12 if 

considering only articles with level of evidence) of the EU27 members, 20 articles (17 

with level of evidence) resulted from the participation of only EU27 countries. 

Collaborations involving only the UK and other non-EU27 countries (i.e., USA, 

Asian countries, and “RoW” countries) resulted, respectively, in 21, 9, and 10 articles 

(and 19, 7 and 6 articles with level of evidence). Finally, collaborations involving the 

UK, non-EU27 as well as EU27 countries resulted, respectively, in 8, 5, and 10 

articles (and 6, 3 and 5 articles with level of evidence).  
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In order to assess the relevance of the EU27 countries to the UK’s scientific success, 

we ranked all articles published by the UK in collaboration solely with any of the 

EU27 countries by normalised citations and innovation index. Starting with the worst 

performing article, we progressively replaced various percentages of such articles 

with articles corresponding to the 25th percentile, the median, or the maximum value 

of the distribution of normalised citations or level of evidence of all articles resulted 

from collaborations with non-EU27 countries. Moreover, to select the articles 

replacing those resulting from collaborations with EU27 members, we further 

distinguished among articles where at least one of the co-authors was affiliated with 

an organisation residing in:  (i) the USA; (ii) one of the seven Asian countries; and 

(iii) one of the remaining “RoW” countries. 
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Appendix 4 

 

 

1. Search strategy 

 

Our study draws on the Web of Science® (WOS) All Databases Search 

Engine (Clarivate Analytics, Philadelphia, PA). A search has been performed 

the 7th December 2017 and a collection of 2,595 articles have been retrieved 

filtering out publications that have as Topic “aortic valve stenosis” and “aortic 

valve regurgitation”. We then refined the search by a subset of categories Web 

of Science® categories to which an article can be assigned:  

 

• “cardiac cardiovascular systems” 

• “surgery” 

• “radiology nuclear medicine medical imaging” 

• “medicine general internal”  

• “medicine research experimental” 

•  “transplantation” 

•  “pathology”, 

• “veterinary sciences” . 

 

We focused the search to only peer-reviewed articles. In web of Science 

searching for topic means that the keywords or combination of keywords are 

searched within a record Title, Abstract, Author Keyword or Web of Science 
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Keywords Plus®. This last set of keywords are assigned by Web of Science 

team of experts rather than the articles authors to improve search engine 

results matching to searched topics.  

 

2. Classification of articles 

 

Two reviewers (G.G. and T.A.) independently critically appraised and 

classified the data for each study: level of evidence, country of study origin 

(based on corresponding author’s affiliation), type of intervention (e.g. TAVI, 

aVR), manufacturer (e.g. Medtronic, Edwards Lifesciences), type of approach 

(e.g. transfemoral for TAVI or minimally-invasive for aVR), and for each 

intervention arm: number of patients, mean age (and standard deviation), 

number of patients dead and follow-up time at which mortality was reported, 

and number of patients developing a disabling cerebrovascular accident 

(CVA), major vascular complications, and moderate-severe paravalvular leak 

(for the last three outcomes 30-day rates were extracted). Any discrepancies 

were resolved by consensus. 

 

When considering the type of intervention we found that aVR intervention 

appears in 376 different articles while TAVI intervention appears in 728 

different articles. 
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3. Network analysis of citation network 

 

a) Construction of the citation network 

Given the bibliographic information provided by Web of Science Search®, 

namely the reference list for each article included in the set of 2,595 collected 

articles, and using VOS Viewer®, a software specifically designed for 

constructing citation and collaboration networks based on reference list, we 

extrapolated the citation network. 

 

The citation network analysed in this study comprises 2,216 articles and 

10,595 links (See Figure S1). In order for an article to be included in the 

citation network, one of the following two criteria needs to be met: an article 

makes a citation to at least one other article in the set of articles collected; an 

article is cited by at least one other article in the set of articles collected. Out 

of our set of collected articles, 1,879 articles made at least one citation to other 

articles while instead 1,306 received at least one citation from one of the other 

articles. Each link of the network represents a citation. 
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Figure S1. The giant component (2,006 articles, 10,491 citation links) of the citation network 

comprising articles concerning “aortic valve stenosis” and “aortic valve regurgitation”. a) each 

node is colored according to the assigned level of evidence and sized according to the number of 

citations it received. b) each node is colored according to the type of intervention(s) outlined in the 

article and sized according to the number of citations it received.  

	  	  
b) Measuring nodes’ network-based characteristics 

 

Given a certain network, we can measure the local properties of its nodes. For 

the purposes of this study we measured the so-called in-degree centrality and a 

revised version of the so-called virality 1. To better understand the definitions 

of the two measures, first we have to define the binary adjacency matrix 𝐴, 

that is used to formally model the connection structure of a network. Each 

entry 𝑎!" of the matrix is a binary value. When  𝑎!"  is equal to one, this means 

that nodes  𝑖 and 𝑗 are connected by a link. When it equals to zero then no 
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connection exists between the two nodes 𝑖 and 𝑗. The direction of the link in 

the context of citation networks is relevant and needs to be taken into account. 

Given the matricial representation of the network, the row order 𝑖  of the entry  

𝑎!" represents the identificator of the node from which a link departs while the 

column order 𝑗 represents the identificator of the node that is pointed by the 

link departing from 𝑖 . Moreover in a citation network, mutual citations 

between the same couple of nodes cannot exist. So an article that cites another 

article, cannot be logically cited by the latter, being this precedent in terms of 

date of publication. Formally, if 𝑎!" = 1 then 𝑎!" =0. For this reason, citation 

networks fall into the broader class of Directed Acyclic Graphs (DAG). 

 

We them can define the in-degree centrality of a node as the sum of all links 

(citations) that point to that node. In other words, the in-degree centrality in 

the context of citations network, is the count of citations received by an article. 

Formally, the in-degree of a node can be defined as it follows 

 

𝑑!!" = 𝑎!"
!

	  

	  
	  
When speaking about virality instead it is important to consider another 

fundamental concept, the path going from one node to another node. A path 

can be defined as the number of links that are necessary to consider in order 

for the two nodes to be directly or indirectly connected strictly following the 

direction of the links and where the nodes at the extremes of each link are 

visited only once. There can be more than one possible path connecting two 

nodes. We then call the shortest path 𝑑!" that path that is characterised by the 
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minimum number of links connecting the two nodes  𝑖 and  𝑗. In other words, 

the shortest path is the minimum distance, or geodesic, among to nodes.  

 

Given the definition of shortest path we can defined the virality as showed in 

the equation in the main manuscript, where after selecting the seed node 𝑠 for 

which we want to evaluate the virality, we compute all the minimum distances 

connecting the node 𝑠 to those nodes that belong to the citation cascade 

generated by it, generation after generation, and we evaluate the average value 

of all geodesics. As describe in Garas et al. (2017),2 the virality defined in this 

way can be used as a proxy of the length of a cascade generated by a node. 

Longer a cascade is, more its seed article virality is characterised by a longer 

and persistent chain of indirect citations. 

 

 

4. Uptake of TAVI interventions 

We investigated the uptake of TAVI intervention interpolating an exponential 

function into data showing evolution over time of sum of number of patients 

included in clinical studies (See Figure 21 in the main text).  

 

A linear trend model has been computed for natural log of sum of number of 

patients given the year of publication of studies including those patients as 

cohorts as the following formulas show:  

 

𝑃 = 𝛼𝑒!"	  
ln 𝑃 = ln 𝛼 + 𝛽𝑌	  
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Term	   Value	   StdErr	   t-‐value	   p-‐value	  
Year	   0.888201	   0.0669125	   13.2741	   <	  0.0001	  
intercept	   -‐1778.63	   134.484	   -‐13.2256	   <	  0.0001	  
Observations:	  13	  
Residual	  degrees	  of	  freedom:	  11	  
SSE	  (sum	  squared	  error):	  10.2227	  
MSE	  (mean	  squared	  error):	  0.929341	  
R-‐Squared:	  0.941939	  
Standard	  error:	  0.964023	  
p-‐value	  (significance):	  <	  0.0001	  

Table S6. Exponential trend best fitting model. 

	  

5. Comparison of aVR and TAVI mortality rates distributions and time 

trend models 

We assessed differences of mortality rates per person-year distributions by 

type of intervention, controlling for age groups (three groups: <60, 61-80, 

>80-years). We performed two non-parametric statistical tests (Kruskal-Wallis 

and Wilcoxon signed-rank tests) in view of the heterogeneous distributions 

(See Figures S32 and S33) of mortality rates per person-year for each group. 

 

Intervention	   Median	   Mortality	   per	  
person-‐year	  

Number	  of	  observations	  

TAVI	  	   25.1	   792	  
aVR	   4.6	   382	  
Table S2. Median values and number of observations of distribution of mortality rates per 

person-year by intervention. 
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Age	  range	   Intervention	  	   Median	   Mortality	  
per	  person-‐year	  

Number	   of	  
observations	  

<60	   aVR	   1.265	   49	  
61-‐80	   TAVI	  	   22.2	   123	  
61-‐80	   aVR	   6.62	   114	  
81+	   TAVI	  	   26.15	   340	  
81+	   aVR	   10.1	   13	  
Table S3. Median values and number of observations of distribution of mortality rates per 

person-year by intervention and by age range. 

	  

	  

Figure S32. Histograms of mortality rates per person-year distributions by intervention. 
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Figure S33. Histograms of mortality rates per person-year distributions by intervention and 

age group. 

	  
c) Difference between aVR and TAVI mortality rates per person-year (not 

age stratified) 

	  
 

Test	  type	   Test	  result	  
Kruskal-‐Wallis	  rank	  sum	  test	   KW	   chi-‐squared	   =	   102.54,	   df	   =	   1,	   p-‐value	  

<2.2e-‐16	  
Wilcoxon	  rank	  sum	  test	  with	  continuity	  co
rrection	  

W	  =	  11913,	  p-‐value	  <2.2e-‐16	  
	  

Table S4. Non-parametric statistical test for group differences in terms of mortality rates per 

person year. 
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d) Difference between aVR and TAVI mortality rates per person-year (age 

stratified) 

	  
 

Test	  
type	  

Test	  result	  by	  age	  group	  
<60	   61-‐80	   81+	  

Kruskal-‐W
allis	  rank	  s
um	  test	  

No	  
observations	  
for	  TAVI	  

Kruskal-‐Wallis	  chi-‐squared	  =	  1
5.978,	  df	  =	  1,	  p-‐value	  =	  6.407e
-‐05	  
	  

Kruskal-‐Wallis	   chi-‐squar
ed	  =	  7.2514,	  df	  =	  1,	  p-‐val
ue	  =	  0.00708	  
	  

Wilcoxon	  
rank	   sum	  
test	  with	  c
ontinuity	  
correction	  

No	   observations	   f
or	  TAVI	  

W	  =	  3209,	  p-‐value	  =	  6.442e-‐0
5	  
	  

W	  =	  708.5,	  p-‐value	  =	  0.0
07125	  
	  

Table S5. Non-parametric statistical test for group differences in terms of mortality rates per 

person year. 

	  
e) Time trend lines of aVR and TAVI mortality rates per person-year 

 
 

Term	   Value	   StdErr	   t-‐value	   p-‐value	  
Year	   -‐17.8609	   4.56222	   -‐3.91496	   0.003538	  
intercept	   35990.9	   9174.64	   3.92286	   0.0034957	  
Observations:11	  
Residual	  degrees	  of	  freedom:9	  
SSE	  (sum	  squared	  error):20605.7	  
MSE	  (mean	  squared	  error):2289.53	  
R-‐Squared:0.630039	  
Standard	  error:47.849	  
p-‐value	  (significance):0.003538	  

Table S6. Linear trend line model coefficients for TAVI intervention mortality rates per 

person-year.	  
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Term	   Value	   StdErr	   t-‐value	   p-‐value	  
Year	   -‐0.223474	   0.425259	   -‐0.525499	   0.604058	  
intercept	   457.128	   852.013	   0.536527	   0.596533	  
Observations:	  26	  
Residual	  degrees	  of	  freedom	  :	  24	  
SSE	  (sum	  squared	  error):	  6347.67	  
MSE	  (mean	  squared	  error):	  264.486	  
R-‐Squared:	  0.0113753	  
Standard	  error:	  16.263	  
p-‐value	  (significance):	  0.604058	  

Table S7. Linear trend line model coefficients for aVR intervention mortality rates per person-

year. 

6. Comparison of aVR and TAVI innovation indices and relationship 

between mortality per person-year and implementation stage 

 

We computed for each intervention group its innovation index (see Figure 

S34). We also analysed for each group the relationship between the 

implementation stage and the mortality per person-year using linear model 

(see Table S9 and S10). 

 
 

Surgical	  
Innovation	  Stage	  

Description	  

1	   Randomised	  controlled	  trial	  
2	   Non-‐randomised	  controlled	  trial	  
3	   Observational	  study	  with	  controls	  
4	   Observational	  study	  without	  controls	  
5	   First-‐in-‐human	  study	  
6	   Cadaveric	  study	  
7	   Animal	  study	  
8	   Description	  of	  idea	  /	  laboratory	  evaluation	  
Table S8. Implementation stages description. 
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Figure S34. a) Innovation index for aVR and TAVI articles; b) relationship between 

intervention stage (inverse value) and mortality per person-year. 

 

	  
	  

Term	   Value	   StdErr	   t-‐value	   p-‐value	  
Implementation	  
stage	  (inverse)	  

-‐58.8983	   21.5337	   -‐2.73517	   0.006601	  

intercept	   73.0262	   7.85121	   9.30126	   <	  0.0001	  
Observations=306	  
Residual	  degree	  of	  freedom=304	  
SSE	  (sum	  squared	  error):	  1.23431e+06	  
MSE	  (mean	  squared	  error):	  4060.22	  
R-‐Squared:	  0.024018	  
Standard	  error:	  63.7198	  
p-‐value	  (significance):	  0.006601	  
Table S9. Linear model of the relationship between implementation stage (inverse) and 

mortality per person-year for TAVI intervention.  	  
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Term	   Value	   StdErr	   t-‐value	   p-‐value	  
Implementation	  
stage	  (inverse)	  

-‐9.39137	   14.3816	   -‐0.653013	   0.515018	  

intercept	   22.2138	   5.59062	   3.97341	   0.0001224	  
Observations=120	  
Residual	  degree	  of	  freedom=118	  
SSE	  (sum	  squared	  error):	  116479	  
MSE	  (mean	  squared	  error):	  987.111	  
R-‐Squared:	  0.0036008	  
Standard	  error:	  31.4183	  
p-‐value	  (significance):	  0.515018	  

Table S10. Linear model of the relationship between implementation stage (inverse) and 

mortality per person-year for aVR intervention.   

	  

7. Mortality rates per person-year and virality relationship by intervention 

We first assessed the two intervention groups differences in terms of virality 

distributions (see Table S11) using the above cited non- parametric test we 

found the two groups to be not statistically different.  

 
 

Test	  type	   Test	  result	  
Kruskal-‐Wallis	  rank	  sum	  test	   Kruskal-‐Wallis	  chi-‐squared	  =	  0.019927,	  df	  =	  1,	  p-‐valu

e	  =	  0.8877	  
Wilcoxon	  rank	  sum	  test	  with	  continuity	  co
rrection	  

W	  =	  51757,	  p-‐value	  =	  0.8879	  

Table S11. Non-parametric statistical test for group differences in terms of virality 

distributions. 

	  
Non parametric test have been used in view of the non-normal distributions of 

virality (see Figure S35). 
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Figure S35. Histograms showing distribution of structural virality scores obtained by articles 

in aVR and TAVI intervention groups. 

	  
	  

We then assessed for each intervention group the existence of differences in 

terms the nature of relationship of mortality rates per person-year with virality 

of the associated study (see Figure 23 in the main text).  

 

We selected as best fitting model to describe the relationship a polynomial 

model of degree 2 for both groups. Table S12 and S13 reports the coefficients 

and p-values for each term of the polynomial model. In brackets comparison 

of the selected models with linear models are reported in correspondence of 

standard indicators of model squared errors and significance.  
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Term	   Value	   StdErr	   t-‐value	   p-‐value	  
Structural	  Virality^2	   73.0574	   16.4539	   4.44012	   <	  0.0001	  
Structural	  Virality	   -‐253.875	   59.0014	   -‐4.30286	   <	  0.0001	  
intercept	   252.963	   47.9324	   5.2775	   <	  0.0001	  

Observations=256	  
Residual	  degree	  of	  freedom=253	  
SSE	  (sum	  squared	  error):	  1.11574e+06	  (Linear:	  1.20268e+06)	  
MSE	  (mean	  squared	  error):	  4410.02	  (Linear:	  4734.95)	  
R-‐Squared:	  0.0749971	  (Linear:	  0.0029177)	  	  
Standard	  error:	  66.408	  (Linear:	  68.811)	  
p-‐value	  (significance):	  <	  0.0001	  (Linear:	  0.389428)	  
Table S12. Polynomial model of degree 2 of the relationship between structural virality and 

mortality per person-year for TAVI intervention.	  

 

Term	   Value	   StdErr	   t-‐value	   p-‐value	  
Structural	  Virality^2	   -‐8.64376	   8.43605	   -‐1.02462	   0.308171	  
Structural	  Virality	   33.3916	   32.2555	   1.03522	   0.30322	  
intercept	   -‐11.5516	   27.1011	   -‐0.426242	   0.670906	  

Observations=97	  
Residual	  degree	  of	  freedom=94	  
SSE	  (sum	  squared	  error):	  80226.5	  (Linear:	  81122.5)	  
MSE	  (mean	  squared	  error):	  853.474	  (Linear:	  853.922)	  
R-‐Squared:	  0.0112724	  (Linear:	  0.0002297)	  	  
Standard	  error:	  29.2143	  (Linear:	  29.2219)	  
p-‐value	  (significance):0.586951	  (Linear:	  0.882857)	  
Table S13. Polynomial model of degree 2 of the relationship between Structural Virality and 

mortality per person-year for aVR intervention. 

	  

8. Mortality rates per person-year and altmetric score relationship by 

intervention 

We assessed the two intervention groups differences in terms of altmetric 

scores distributions using the above cited non-parametric test we found the 

two groups to be statistically different.  
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Test	  type	   Test	  result	  
Kruskal-‐Wallis	  rank	  sum	  test	   Kruskal-‐Wallis	  chi-‐squared	  =	  50.96,	  df	  =	  1,	  p-‐value	  =	  

9.427e-‐13	  
Wilcoxon	  rank	  sum	  test	  with	  continuity	  co
rrection	  

W	  =	  118570,	  p-‐value	  =	  9.434e-‐13	  

Table S14. Non-parametric statistical test for group differences in terms of virality altmetric 

distribution. 

	  
Non-parametric tests were used in view of the heterogeneous distributions of 

altmetric scores (see Figure S6). 

	  

	  
Figure S6. Histograms showing distribution of altmetric scores obtained by articles in aVR 

and TAVI intervention groups. 

	  
We also considered the nature of relationship between the indicator of virality 

and altmetric score using a Kendall’s rank correlation test (after assessing the 

not normality of virality and altmetric score distributions) and found that two 

measures do not correlate with a correlation coefficient tau= -0.09798 (p-value 

= 0.0008234).  
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We then assessed for each intervention group the existence of differences in 

terms the nature of relationship of mortality rates per person-year with the 

altmetric score of the associated study (see Figure 24 in the main text).  

We selected as best fitting model to describe the relationship a logarithmic 

model for the TAVI intervention group and a linear model for the aVR 

intervention group. Table S15 and S16 report the coefficients and p-values for 

each term of the models. In brackets comparison of the selected models with 

linear models are reported in correspondence of standard indicators of model 

squared errors and significance.  

	  
 

Term	   Value	   StdErr	   t-‐value	   p-‐value	  
ln(altmetric_score)	   -‐4.01903	   1.83543	   -‐2.18969	   0.0298328	  
intercept	   45.0483	   3.43585	   13.1113	   <	  0.0001	  
Observations=188	  
Residual	  degree	  of	  freedom=186	  
SSE	  (sum	  squared	  error):	  323536	  (Linear:	  325904)	  
MSE	  (mean	  squared	  error):	  1797.42	  (Linear:	  1810.58)	  
R-‐Squared:	  0.0259463	  (Linear:	  0.0188166)	  	  
Standard	  error:	  42.396	  (Linear:	  42.5509)	  
p-‐value	  (significance):	  0.0298328	  (Linear:	  0.0648109)	  
Table S15. Logarithmic regression model for TAVI. 

 

Term	   Value	   StdErr	   t-‐value	   p-‐value	  

altmetric_score	   -‐0.029988	   0.0557139	   -‐0.53825	   0.592892	  
intercept	   16.2684	   3.83268	   4.24466	   <	  0.0001	  
Observations=50	  
Residual	  degree	  of	  freedom=50	  
SSE	  (sum	  squared	  error):	  31437.6	  
MSE	  (mean	  squared	  error):	  654.949	  
R-‐Squared:	  0.0059995	  
Standard	  error:	  25.592	  
p-‐value	  (significance):	  0.592892	  

Table S16. Linear regression model for aVR. 
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9. Mortality rates per person-year and citations relationship by intervention 

We assessed for each intervention group the existence of differences in terms 

the nature of relationship of mortality rates per person-year with the citations 

received by the associated study.  

 

We selected as best fitting model to describe the relationship a logarithmic 

model both for TAVI and aVR intervention. Table S17 and S18 report the 

coefficients and p-values for each term of the models. In brackets comparison 

of the selected models with linear models are reported in correspondence of 

standard indicators of model squared errors and significance.  

 
 

Term	   Value	   StdErr	   t-‐value	   p-‐value	  
ln(Citations)	   -‐5.46236	   3.06828	   -‐1.78027	   0.0762461	  
intercept	   68.35	   7.01283	   9.74642	   <	  0.0001	  
Observations=252	  
Residual	  degree	  of	  freedom=250	  
SSE	  (sum	  squared	  error):	  1.17995e+06	  (Linear:	  1.18885e+06)	  
MSE	  (mean	  squared	  error):	  4719.81	  (Linear:	  4755.41)	  	  
R-‐Squared:	  	  0.0125187	  (Linear:	  0.00507)	  	  
Standard	  error:	  68.7009	  (Linear:	  68.9595)	  
p-‐value	  (significance):	  0.0762461	  (Linear:	  0.260107)	  
Table S17. Logarithmic regression model for TAVI.	  

 
 

 

Term	   Value	   StdErr	   t-‐value	   p-‐value	  
ln(Citations)	   -‐2.00048	   2.95692	   -‐0.676542	   0.500432	  
intercept	   18.8855	   4.56977	   4.1327	   <	  0.0001	  
Observations=92	  
Residual	  degree	  of	  freedom=90	  
SSE	  (sum	  squared	  error):	  	  79840.9	  (Linear:	  80220.8)	  
MSE	  (mean	  squared	  error):	  887.121	  (Linear:	  891.342)	  
R-‐Squared:	  0.0003254	  (Linear:	  0.0050599)	  
Standard	  error:	  29.8554	  (Linear:	  29.7846)	  
p-‐value	  (significance):	  0.864491	  (Linear:	  0.500432)	  
Table S18. Logarithmic regression model for TAVI.	  
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Appendix 5 

 

10. Search strategy 

 

Our study draws on the Web of Science® (WOS) All Databases Search 

Engine (Clarivate Analytics, Philadelphia, PA). A search has been performed 

the 2nd of June 2017 and a collection of 2,884 articles have been retrieved 

filtering out publications that have as Topic “aortic valve stenosis” and “aortic 

valve regurgitation”. We then refined the search by a subset of categories Web 

of Science® categories to which an article can be assigned:  

• “cardiac cardiovascular systems” 

• “surgery” 

• “radiology nuclear medicine medical imaging” 

• “medicine general internal”  

• “medicine research experimental” 

•  “transplantation” 

•  “pathology”, 

• “veterinary sciences”. 

 

We focused the search to only peer-reviewed articles. In web of Science 

searching for topic means that the keywords or combination of keywords are 

searched within a record Title, Abstract, Author Keyword or Web of Science 

Keywords Plus®. This last set of keywords are assigned by Web of Science 
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team of experts rather than the articles authors to improve search engine 

results matching to searched topics.  

11. Classification of articles 

 

Two reviewers (G.G. and T.A.) independently critically appraised and 

classified the data for each study: level of evidence, country of study origin 

(based on corresponding author’s affiliation), type of intervention (e.g. TAVI, 

aVR), manufacturer (e.g. Medtronic, Edwards Lifesciences), type of approach 

(e.g. transfemoral for TAVI or minimally-invasive for aVR), and for each 

intervention arm: number of patients, mean age (and standard deviation), 

number of patients dead and follow-up time at which mortality was reported, 

and number of patients developing a disabling cerebrovascular accident 

(CVA), major vascular complications, and moderate-severe paravalvular leak 

(for the last three outcomes 30-day rates were extracted). Any discrepancies 

were resolved by consensus. 

 

Given the bibliographic information we obtained from Web of Science 

Search®, whenever the affiliation of the corresponding author was available, 

we used it to attribute to an article a unique geographical region. The list 

countries appearing in the affiliations address for each of the 7 regions here 

considered (Africa, Asia, Central and South America, Europe, Middle East, 

North America and Oceania) are showed in Table S1. 
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Region Countries 
Africa Cameroon, Egypt, Ethiopia, Kenia, Morocco, South Africa, 

Uganda, Zimbabwe 
Asia China, India, Indonesia, Japan, Nepal, Pakistan, 

Singapore, South Korea, Sri Lanka, Taiwan 
Central and 
South 
America 

Argentina, Brazil, Chile, Guyana, Mexico, Uruguay 

Europe Austria, Belgium, Bosnia and Herzegovina, Croatia, 
Cyprus, Czech Republic, Denmark, Finland, France, 
Germany, Greece, Hungary, Iceland, Ireland, Italy, 
Lithuania, Netherlands, Norway, Poland, Portugal, 
Romania, Russia, Serbia, Slovakia, Slovenia, Spain, 
Sweden, Switzerland, Turkey, United Kingdom, 
Yuguslavia 

Middle East Iran, Israel, Saudi Arabia, Syria, United Arab Emirates, 
Yemen 

North 
America 

Canada, USA 

Oceania Australia, New Zealand 

Table S1. List of regions and countries.   

	  

12. Network analysis of citation network 

	  
3.1 Construction of the citation network 

Given the bibliographic information provided by Web of Science Search®, 

namely the reference list for each article included in the set of 2,595 collected 

articles, and using VOS Viewer®, a software specifically designed for 

constructing citation and collaboration networks based on reference list, we 

extrapolated the citation network. 

 

The citation network analysed in this study comprises 2,216 articles and 

10,595 links. In order for an article to be included in the citation network, one 

of the following two criteria needs to be met: an article makes a citation to at 

least one other article in the set of articles collected; an article is cited by at 
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least one other article in the set of articles collected. Out of our set of collected 

articles, 1,879 articles made at least one citation to other articles while instead 

1,306 received at least one citation from one of the other articles. Each link of 

the network represents a citation. 

 

3.2 Measuring nodes’ network-based characteristics 

Given a certain network, we can measure the local properties of its nodes. For 

the purposes of this study we measured the so-called in-degree centrality and a 

revised version of the so-called virality 1. To better understand the definitions 

of the two measures, first we have to define the binary adjacency matrix 𝐴, 

that is used to formally model the connection structure of a network. Each 

entry 𝑎!" of the matrix is a binary value. When  𝑎!"  is equal to one, this means 

that nodes  𝑖 and 𝑗 are connected by a link. When it equals to zero then no 

connection exists between the two nodes 𝑖 and 𝑗. The direction of the link in 

the context of citation networks is relevant and needs to be taken into account. 

Given the matricial representation of the network, the row order 𝑖  of the entry  

𝑎!" represents the identificator of the node from which a link departs while the 

column order 𝑗 represents the identificator of the node that is pointed by the 

link departing from 𝑖 . Moreover in a citation network, mutual citations 

between the same couple of nodes cannot exist. So an article that cites another 

article, cannot be logically cited by the latter, being this precedent in terms of 

date of publication. Formally, if 𝑎!" = 1 then 𝑎!! =0. For this reason, citation 

networks fall into the broader class of Directed Acyclic Graphs (DAG). 
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We them can define the in-degree centrality of a node as the sum of all links 

(citations) that point to that node. In other words, the in-degree centrality in 

the context of citations network, is the count of citations received by an article. 

Formally, the in-degree of a node can be defined as it follows 

 
𝑑!!" = 𝑎!"

!

 

 
 
When speaking about virality instead it is important to consider another 

fundamental concept, the path going from one node to another node. A path 

can be defined as the number of links that are necessary to consider in order 

for the two nodes to be directly or indirectly connected strictly following the 

direction of the links and where the nodes at the extremes of each link are 

visited only once. There can be more than one possible path connecting two 

nodes. We then call the shortest path 𝑑!" that path that is characterised by the 

minimum number of links connecting the two nodes  𝑖 and  𝑗. In other words, 

the shortest path is the minimum distance, or geodesic, among to nodes.  

 

Given the definition of shortest path we can defined the virality as showed in 

the equation in the main manuscript, where after selecting the seed node 𝑠 for 

which we want to evaluate the virality, we compute all the minimum distances 

connecting the node 𝑠 to those nodes that belong to the citation cascade 

generated by it, generation after generation, and we evaluate the average value 

of all geodesics. As described by Garas et al. (2017)2, the virality defined in 

this way can be used as a proxy of the length of a cascade generated by a 
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node. Longer a cascade is, more its seed article virality is characterised by a 

longer and persistent chain of indirect citations. 

 

4 Statistical analysis of regional group differences 

 

4.1  Number of observations  

For some articles show more than one arm (intervention), from a minimum of 2 

to a maximum of 3, we disentangled the clinical outcomes (mortality, 

percentage of patients with disabling CVA, percentage of patients with major 

vascular complications and percentage of patients with moderate or severe 

paravalvular leak) for each single intervention (i.e. an article comparing two 

TAVI interventions, will result in two observations of outcomes). For this 

reason, we evaluated the overall clinical performance of each regional group 

over the 792 observations originating from 728 articles concerning TAVI 

intervention(s). We instead evaluated all the other outcomes based on the 728 

set of articles as unit of observation. Indeed the level of evidence as well as the 

count of citations, the structural virality and the altmetric score are associated 

to the single article, independently from the number of interventions that are 

exhibited.  

 
Measure  # Total available observations 
Mortality per person year 

Africa 
Asia 
Central and South America 
Europe 
Middle East 
North America 
Oceania 

N=417 (N missing=375) 
No observations 
N=15 
N=13 
N=272 
N=8 
N=101 
N=8 
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% Patients with Disabling CVA 
Africa 
Asia 
Central and South America 
Europe 
Middle East 
North America 
Oceania 

N=351 (N missing=441) 
No observations 
N=13 
N=11 
N=220 
N=4 
N=95 
N=8 

% Patients with major vascular complications 
Africa 
Asia 
Central and South America 
Europe 
Middle East 
North America 
Oceania 

N=296 (N missing=496) 
No observations 
N=13 
N=9 
N=190 
N=3 
N=76 
N=5 

% Patients with moderate or severe paravalvular 
leak 

Africa 
Asia 
Central and South America 
Europe 
Middle East 
North America 
Oceania 

N=437 (N missing=355) 
No observations 
N=14 
N=11 
N=281 
N=8 
N=114 
N=9 

Citations 
Africa 
Asia 
Central and South America 
Europe 
Middle East 
North America 
Oceania 

N=451(N missing=277) 
No observations 
N=13 
N=4 
N=293 
N=9 
N=122 
N=10 

Structural Virality 
Africa 
Asia 
Central and South America 
Europe 
Middle East 
North America 
Oceania 

N=451 (N missing=277) 
No observations 
N=13 
N=4 
N=293 
N=9 
N=122 
N=10 

Altmetric 
Africa 
Asia 
Central and South America 
Europe 
Middle East 
North America 
Oceania 

N=284 (N missing=444) 
No observations 
N=6 
N=4 
N=174 
N=5 
N=88 
N=7 

Table S1. Number of observations by measure and regional group. 
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4.2 Distribution of measures 

In this paragraph we provide evidence on the characteristic of Europe’s and 

North America’s distributions of the following variables: mortality per person 

year, percentage of patients with disabling CVA, percentage of patients with 

major vascular complications, percentage of patients with moderate or severe 

paravalvular leak, citations, structural virality and altmetric score. The aim 

here is to show how these two groups of observations, across all the measures 

here considered, are far from being characterised by normal distributions. 

Visual comparisons of the two univariate Kernel distribution estimates 

corresponding to each of the two groups are provided to support the statistical 

result reported in section 4.3.  

 

 
Figure S1. Histogram with corresponding normal curve for Europe’s distribution of mortality 

per person year. 
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Figure S2. Histogram with corresponding normal curve for North America’s distribution of 

mortality per person year. 

	  

 
Figure S3. Comparison of univariate Kernel density estimates for mortality per person year 

distributions for Europe and North America regions; smoothing parameter is set to be as the 

mean of the normal optimal values for the different groups; estimated curves are intentionally 

showed within the maximum range of observation across the different groups (right and left 

tails have been truncated). 
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Figure S4. Histogram with corresponding normal curve for Europe’s distribution of 

percentage of patients with disabling CVA. 

	  

 
Figure S5. Histogram with corresponding normal curve for North America’s distribution of percentage 

of patients with disabling CVA.  
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Figure S6. Comparison of univariate Kernel density estimates for percentage of patients with 

disabling CVA distributions for Europe and North America regions; smoothing parameter is 

set to be as the mean of the normal optimal values for the different groups; estimated curves 

are intentionally showed within the maximum range of observation across the different groups 

(right and left tails have been truncated). 

	  

 
Figure S7. Histogram with corresponding normal curve for Europe’s distribution of percentage of 

patients with major vascular complications. 
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Figure S8. Histogram with corresponding normal curve for North America’s distribution of 

percentage of patients with major vascular complications. 

	  

 
Figure S9. Comparison of univariate Kernel density estimates for percentage of patients with 

major vascular complications distributions for Europe and North America regions; smoothing 

parameter is set to be as the mean of the normal optimal values for the different groups; 

estimated curves are intentionally showed within the maximum range of observation across 

the different groups (right and left tails have been truncated). 
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Figure S10. Histogram with corresponding normal curve for Europe’s distribution of 

percentage of patients with moderate or severe paravalvular leak. 

 
Figure S11. Histogram with corresponding normal curve for North America’s distribution of 

percentage of patients with moderate or severe paravalvular leak.  
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Figure S12. Comparison of univariate Kernel density estimates for percentage of patients 

with moderate or severe paravalvular leak distributions for Europe and North America 

regions; smoothing parameter is set to be as the mean of the normal optimal values for the 

different groups; estimated curves are intentionally showed within the maximum range of 

observation across the different groups (right and left tails have been truncated). 

	  

 
Figure S13. Histogram with corresponding normal curve for Europe’s distribution of 

citations. 
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Figure S14. Histogram with corresponding normal curve for North America’s distribution of 

citations. 

	  

 
Figure S15.  Comparison of univariate Kernel density estimates for citations distributions for 

Europe and North America regions; smoothing parameter is set to be as the mean of the 

normal optimal values for the different groups; estimated curves are intentionally showed 

within the maximum range of observation across the different groups (right and left tails have 

been truncated). 
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Figure S16. Histogram with corresponding normal curve for Europe’s distribution of 

structural virality. 

 

 
Figure S17. Histogram with corresponding normal curve for Europe’s distribution of 

structural virality. 
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Figure S18. Comparison of univariate Kernel density estimates for structural virality 

distributions for Europe and North America regions; smoothing parameter is set to be as the 

mean of the normal optimal values for the different groups; estimated curves are intentionally 

showed within the maximum range of observation across the different groups (right and left 

tails have been truncated). 

	  

 
Figure S19. Histogram with corresponding normal curve for Europe’s distribution of 

altmetric score. 
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Figure S20. Histogram with corresponding normal curve for North America’s distribution of 

altmetric score. 

	  

 
Figure S21. Comparison of univariate Kernel density estimates for altmetric score 

distributions for Europe and North America regions; smoothing parameter is set to be as the 

mean of the normal optimal values for the different groups; estimated curves are intentionally 

showed within the maximum range of observation across the different groups (right and left 

tails have been truncated). 

 
 

4.3 Pairwise comparison of distributions: Wilcoxon one-sided test  

 

We showed in section 4.2 of this supplementary material (Figures S1-S21), the 

variables used in this study are never characterised by a normal distribution for 

any of the two regional groups. Therefore, to make a statistical comparison of 
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the two regional groups we opted for a non-parametric test, allowing also for 

one-sided comparison. 

 

We performed a two-sample one-sided Wilcoxon rank sum test tests with 

continuity correction to assess statistically the significance of the difference 

between Europe’s and North America distributions of mortality per person 

year, percentage of patients with disabling CVA, percentage of patients with 

major vascular complications, percentage of patients with moderate or severe 

paravalvular leak, citations, structural virality and altmetric score.  

 

The two groups have been first ranked in a decreasing order according to the 

median values of distributions for each measure, so that the test was aimed to 

assess if the first group in rank was significantly higher than the second. The 

significance values one-tailed right test for each pair of distributions 

(alternative hypothesis: distribution of group 1 (G1) is shifted to the right of 

distribution of group 2 (G2) are reported in the following table:  

 
Distribution 
G1 

Distribution 
G1 

Measure p-value 

North 
America 

Europe Mortality per person 
year 

0.470 

North 
America 

Europe % patients with 
Disabling CVA 

0.002* 

North 
America 

Europe % patients with major 
vascular complications 

0.149 

North 
America 

Europe % patients with 
moderate or severe 
paravalvular leak 

0.134 

North 
America 

Europe Citations 0.021* 

North 
America 

Europe Structural Virality 0.342 

North 
America 

Europe Altmetric score 0.004* 
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4.4 Fisher’s test  

We also performed a Fisher test for dichotomous variables to assess group 

differences for three of the four measures indicating a clinical outcome: the 

percentage of patients with disabling CVA, the percentage of patients with 

major vascular complications and the percentage of patients with moderate or 

severe paravalvular leak.  

 

The contingency tables that were used to computed odds ratio for each group 

for any of the three measures are presented below:  

 
 

Region Rank Count of patients 
with disabling 
CVA 

Count of patients 
without disabling 
CVA 

Odds ratio 

North 
America 

1 1,475 50,485 0.029 

Europe 2 2,023 100,226 0.020 
Table S1. Contingency table showing the count of patients with and without disabling CVA 

clinical outcome across all studies accounted to Europe and North America. 

 
 

 

Region Rank Count of patients 
with major vascular 
complications 

Count of patients 
without major 
vascular 
complications 

Odds ratio 

North 
America 

1 2,204               49,756 0.044 

Europe 2 3,810 98,439 0.039 
Table S2. Contingency table showing the count of patients with and without major vascular 

complications clinical outcome across all studies accounted to Europe and North America. 
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Region Rank Count of patients 
with moderate or 
severe 
paravalvular leak 

Count of patients 
without moderate or 
severe paravalvular 
leak 

Odds ratio 

North America 1 4,215 47,745 0.088 
Europe 2 7,782 94,466 0.082 
Table S3. Contingency table showing the count of patients with and without moderate or 

severe paravalvular leak clinical outcome across all studies accounted to Europe and North 

America. 

 
 

 

G1  G2 Measure p-value 
North 
America 

Europe % patients with Disabling CVA 3.23e-26* 

North 
America 

Europe % patients with major vascular complications 4.83e-07* 

North 
America 

Europe % patients with moderate or severe 
paravalvular leak 

2.77e-04* 

Table S4. Fisher test significance values by measure. Significance threshold is 0.05 (*). The 

alternative hypothesis is that first ranked group (G1) odds ratio is higher than second ranked 

group (G2). 
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Appendix 6 

 

Peer-reviewed publications, copyright permissions forms, and research reports  

 

Garas G, Cingolani I, Patel V, Panzarasa P, Darzi A, Athanasiou T. Evaluating the 

implications of Brexit for research collaboration and policy: A network analysis and 

simulation study. BMJ Open. 2019 Sep 10;9(9):e0250525. 

 

Published open access (copyright: ©2019 Garas et al.) 
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